Skip to main content

Spreading, Nonergodicity, and Selftrapping: A Puzzle of Interacting Disordered Lattice Waves

  • Conference paper
  • First Online:
Nonlinear Dynamics: Materials, Theory and Experiments

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 173))

Abstract

Localization of waves by disorder is a fundamental physical problem encompassing a diverse spectrum of theoretical, experimental and numerical studies in the context of metal-insulator transitions, the quantum Hall effect, light propagation in photonic crystals, and dynamics of ultra-cold atoms in optical arrays, to name just a few examples. Large intensity light can induce nonlinear response, ultracold atomic gases can be tuned into an interacting regime, which leads again to nonlinear wave equations on a mean field level. The interplay between disorder and nonlinearity, their localizing and delocalizing effects is currently an intriguing and challenging issue in the field of lattice waves. In particular it leads to the prediction and observation of two different regimes of destruction of Anderson localization—asymptotic weak chaos, and intermediate strong chaos, separated by a crossover condition on densities. On the other side approximate full quantum interacting many body treatments were recently used to predict and obtain a novel many body localization transition, and two distinct phases—a localization phase, and a delocalization phase, both again separated by some typical density scale. We will discuss selftrapping, nonergodicity and nonGibbsean phases which are typical for such discrete models with particle number conservation and their relation to the above crossover and transition physics. We will also discuss potential connections to quantum many body theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  2. T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007)

    Article  ADS  Google Scholar 

  3. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D.N. Christodoulides, Y. Silberberg, Phys. Rev. Lett. 100, 013906 (2008)

    Article  ADS  Google Scholar 

  4. D. Clement, A.F. Varon, J.A. Retter, L. Sanchez-Palencia, A. Aspect, P. Bouyer, New J. Phys. 8, 165 (2006); L. Sanches-Palencia, D. Clement, P. Lugan, P. Bouyer, G.V. Shlyapnikov, A. Aspect, Phys. Rev. Lett. 98, 210401 (2007); J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, A. Aspect, Nature 453, 891 (2008); G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, M. Inguscio. Nature 453, 895 (2008)

    Google Scholar 

  5. O. Morsch, M. Oberthaler, Rep. Prog. Phys. 78, 176 (2006)

    Google Scholar 

  6. YuS Kivshar, G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, Amsterdam, 2003)

    Google Scholar 

  7. K.Ø. Rasmussen, T. Cretegny, P.G. Kevrekidis, N. Grønbech-Jensen, Phys. Rev. Lett. 84, 3740 (2000)

    Article  ADS  Google Scholar 

  8. M. Johansson, K.Ø. Rasmussen, Phys. Rev. E 70, 066610 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  9. B. Rumpf, EPL 78, 26001 (2007)

    Article  ADS  Google Scholar 

  10. B. Rumpf, Phys. Rev. E 77, 036606 (2008)

    Article  ADS  Google Scholar 

  11. B. Rumpf, Phys. D 238, 2067 (2009)

    Article  MathSciNet  Google Scholar 

  12. S. Flach, C.R. Willis, Phys. Rep. 295, 181 (1998); D.K. Campbell, S. Flach, Y.S. Kivshar, Phys. Today 57 (1), 43 (2004); S. Flach, A.V. Gorbach. Phys. Rep. 467, 1 (2008)

    Google Scholar 

  13. D.M. Basko, Phys. Rev. E 89, 022921 (2014)

    Article  ADS  Google Scholar 

  14. G. Kopidakis, S. Komineas, S. Flach, S. Aubry, Phys. Rev. Lett. 100, 084103 (2008)

    Article  ADS  Google Scholar 

  15. B. Kramer, A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993)

    Article  ADS  Google Scholar 

  16. T.V. Laptyeva, M.V. Ivanchenko, S. Flach, J. Phys. A 47, 493001 (2014)

    Article  Google Scholar 

  17. A.S. Pikovsky, D.L. Shepelyansky, Phys. Rev. Lett. 100, 094101 (2008)

    Article  ADS  Google Scholar 

  18. S. Flach, D. Krimer, Ch. Skokos, Phys. Rev. Lett. 102, 024101 (2009)

    Article  ADS  Google Scholar 

  19. Ch. Skokos, D.O. Krimer, S. Komineas, S. Flach, Phys. Rev. E 79, 056211 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Johansson, G. Kopidakis, S. Aubry, Europhys. Lett. 91, 50001 (2010)

    Article  ADS  Google Scholar 

  21. J. Bodyfelt, T.V. Laptyeva, Ch. Skokos, D. Krimer, S. Flach. Phys. Rev. E 84, 016205 (2011)

    Google Scholar 

  22. T.V. Laptyeva, J.D. Bodyfelt, D.O. Krimer, Ch. Skokos, S. Flach, EPL 91, 30001 (2010)

    Article  ADS  Google Scholar 

  23. S. Flach, arxiv:1405.1122

    Google Scholar 

  24. M.V. Ivanchenko, T.V. Laptyeva, S. Flach, Phys. Rev. Lett. 107, 240602 (2011)

    Google Scholar 

  25. S. Flach, Chem. Phys. 375, 548 (2010)

    Article  ADS  Google Scholar 

  26. Y.B. Zeldovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York, 1966); Y.B. Zeldovich, A. Kompaneets, in Collected Papers of the 70th Anniversary of the Birth of Academician, A.F. Ioffe (Moscow, 1950); G.I. Barenblatt. Prikl. Mat. Mekh. 16, 67 (1952)

    Google Scholar 

  27. A.R. Kolovsky, E.A. Gomez, H.J. Korsch, Phys. Rev. A 81, 025603 (2010)

    Article  ADS  Google Scholar 

  28. M. Mulansky, A. Pikovsky, EPL 90, 10015 (2010)

    Article  ADS  Google Scholar 

  29. T.V. Laptyeva, J.D. Bodyfelt, S. Flach, Phys. D 256–257, 1 (2013)

    Article  Google Scholar 

  30. D.M. Basko, I.L. Aleiner, B.L. Altshuler, Ann. Phys. 321, 1126 (2006)

    Article  ADS  Google Scholar 

  31. I.L. Aleiner, B.L. Altshuler, G.V. Shlyapnikov, Nat. Phys. 6, 900 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergej Flach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Flach, S. (2016). Spreading, Nonergodicity, and Selftrapping: A Puzzle of Interacting Disordered Lattice Waves. In: Tlidi, M., Clerc, M. (eds) Nonlinear Dynamics: Materials, Theory and Experiments. Springer Proceedings in Physics, vol 173. Springer, Cham. https://doi.org/10.1007/978-3-319-24871-4_3

Download citation

Publish with us

Policies and ethics