Skip to main content

Emerging Role of Dysadherin in Metastasis

  • Chapter
  • First Online:
Regulation of Membrane Na+-K+ ATPase

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 15))

  • 1147 Accesses

Abstract

Dysadherin, a small regulator of Na+/K+-ATPase and a cell membrane glycoprotein, is associated with cancer metastasis. However, its role in metastasis is largely unknown. In this review we highlight the role of this recently identified protein in cancer progression. Dysadherin has been suggested to affect cancer progression by downregulating E-cadherin or by upregulating the chemokine production. Overexpression of dysadherin alters trans epithelial resistance (TER) indicating it’s effect on paracellular permeability. Additional findings suggest that dysadherin also affects extracellular matrix. The expression of dysadherin can influence both the tumor cell as well as the cell matrix. Recent findings strongly suggest that dysadherin expression as an independent prognostic indicator of metastasis. Thus, dysadherin can be used as a molecular target for identification as well as prevention of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ino Y, Gotoh M, Sakamoto M et al (2002) Dysadherin, a cancer-associated cell membrane glycoprotein, down-regulates E-cadherin and promotes metastasis. Proc Natl Acad Sci 99:365–370

    Article  CAS  PubMed  Google Scholar 

  2. Lubarski I, Pihakaski-Maunsbach K, Karlish SJ et al (2005) Interaction with the Na+/K + -ATPase and tissue distribution of FXYD5 (related to ion channel). J Biol Chem 280:37717–37724

    Article  CAS  PubMed  Google Scholar 

  3. Geering K (2006) FXYD proteins: new regulators of Na+/K+-ATPase. Am J Physiol 290:F241–F250

    CAS  Google Scholar 

  4. Tsuiji H, Takasaki S, Sakamoto M et al (2003) Aberrant O-glycosylation inhibits stable expression of dysadherin, a carcinoma-associated antigen, and facilitates cell-cell adhesion. Glycobiology 13:521–527

    Article  CAS  PubMed  Google Scholar 

  5. Fu X, Kamps MP (1997) E2a-Pbx1 induces aberrant expression of tissue-specific and developmentally regulated genes when expressed in NIH 3T3 fibroblasts. Mol Cell Biol 17:1503–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bild AH, Yao G, Chang JT et al (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439:353–357

    Article  CAS  PubMed  Google Scholar 

  7. Robinson M, Jiang P, Cui J et al (2003) Global genechip profiling to identify genes responsive to p53-induced growth arrest and apoptosis in human lung carcinoma cells. Cancer Biol Ther 2:406–415

    Article  CAS  PubMed  Google Scholar 

  8. Gabrielli NM, Veiga MF, Matos ML et al (2011) Expression of dysadherin in the human male reproductive tract and in spermatozoa. Fertil Steril 96:554–561

    Article  CAS  PubMed  Google Scholar 

  9. Shimamura T, Yasuda J, Ino Y et al (2004) Dysadherin expression facilitates cell motility and metastatic potential of human pancreatic cancer cells. Cancer Res 64:6989–6995

    Article  CAS  PubMed  Google Scholar 

  10. Nam JS, Kang MJ, Suchar AM et al (2006) Chemokine (C-C motif) ligand 2 mediates the prometastatic effect of dysadherin in human breast cancer cells. Cancer Res 66:7176–7184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yanagihara K, Tanaka H, Takigahira M et al (2004) Establishment of two cell lines from human gastric scirrhous carcinoma that possess the potential to metastasize spontaneously in nude mice. Cancer Sci 95:575–582

    Article  CAS  PubMed  Google Scholar 

  12. Maehata Y, Hirahashi M, Aishima S et al (2011) Significance of dysadherin and E-cadherin expression in differentiated-type gastric carcinoma with submucosal invasion. Hum Pathol 42:558–567

    Article  CAS  PubMed  Google Scholar 

  13. Sato H, Ino Y, Miura A et al (2003) Dysadherin: expression and clinical significance in thyroid carcinoma. J Clin Endocrinol Metab 88:4407–4412

    Article  CAS  PubMed  Google Scholar 

  14. Colamaio M, Calì G, Sarnataro D et al (2012) Let-7a down-regulation plays a role in thyroid neoplasias of follicular histotype affecting cell adhesion and migration through its ability to target the FXYD5 (Dysadherin) gene. J Clin Endocrinol Metab 97:E2168–F2178

    Article  CAS  PubMed  Google Scholar 

  15. Kang MJ, Suchar AM, Shimamura T et al (2006) Chemokine (C-C motif) ligand 2 mediates the prometastatic effect of dysadherin in human breast cancer cells. Cancer Res 66:7176–7184

    Article  PubMed  PubMed Central  Google Scholar 

  16. Saji H, Koike M, Yamori T et al (2001) Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer 92:1085–1091

    Article  CAS  PubMed  Google Scholar 

  17. Ohta M, Kitadai Y, Tanaka S et al (2003) Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human gastric carcinomas. Int J Oncol 22:773–778

    CAS  PubMed  Google Scholar 

  18. Youngs SJ, Ali SA, Taub DD et al (1997) Chemokines induce migrational responses in human breast carcinoma cell lines. Int J Cancer 71:257–266

    Article  CAS  PubMed  Google Scholar 

  19. Shimamura T, Sakamoto M, Ino Y et al (2003) Dysadherin overexpression in pancreatic ductal adenocarcinoma reflects tumor aggressiveness: relationship to e-cadherin expression. J Clin Oncol 21:659–667

    Article  CAS  PubMed  Google Scholar 

  20. Lubarski I, Asher C, Garty H (2011) FXYD5 (dysadherin) regulates the paracellular permeability in cultured kidney collecting duct cells. Am J Physiol 301:F1270–F1280

    Article  CAS  Google Scholar 

  21. Lubarski I, Asher C, Garty H (2014) Modulation of cell polarization by the Na+/K+-ATPase-associated protein FXYD5 (dysadherin). Am J Physiol 306:C1080–C1088

    Article  CAS  Google Scholar 

  22. Vagin O, Tokhtaeva E, Sachs G (2006) The role of the beta1 subunit of the Na, K-ATPase and its glycosylation in cell-cell adhesion. J Biol Chem 281:39573–39587

    Article  CAS  PubMed  Google Scholar 

  23. Park JR, Kim RJ, Lee YK et al (2011) Dysadherin can enhance tumorigenesis by conferring properties of stem-like cells to hepatocellular carcinoma cells. J Hepatol 54:122–131

    Article  CAS  PubMed  Google Scholar 

  24. Tamura M, Ohta Y, Tsunezuka Y et al (2005) Prognostic significance of dysadherin expression in patients with non-small cell lung cancer. J Thorac Cardiovasc Surg 130:740–745

    Article  CAS  PubMed  Google Scholar 

  25. Shimada Y, Yamasaki S, Hashimoto Y et al (2004) Clinical significance of dysadherin expression in gastric cancer patients. Clin Cancer Res 10:2818–2823

    Article  CAS  PubMed  Google Scholar 

  26. Nakanishi Y, Akimoto S, Sato Y et al (2004) Prognostic significance of dysadherin expression in tongue cancer: immune histochemical analysis of 91 cases. Appl Immunohistochem Mol Morphol 12:323–328

    Article  CAS  PubMed  Google Scholar 

  27. Batistatou A, Charalabopoulos AK, Scopa CD et al (2006) Expression patterns of dysadherin and E-cadherin in lymph node metastases of colorectal carcinoma. Virchows Arch 448:763–767

    Article  CAS  PubMed  Google Scholar 

  28. Kyzas PA, Stefanou D, Batistatou A et al (2006) Dysadherin expression in head and neck squamous cell carcinoma: association with lymphangiogenesis and prognostic significance. Am J Surg Pathol 30:185–193

    Article  PubMed  Google Scholar 

  29. Crambert G, Geering K (2003) FXYD proteins: new tissue-specific regulators of the ubiquitous Na+/K+-ATPase. Sci STKE 2003:RE1

    PubMed  Google Scholar 

  30. Kometiani P, Li J, Gnudi L et al (1998) Multiple signal transduction pathways link Na+/K+-ATPase to growth-related genes in cardiac myocytes. The roles of Ras and mitogen-activated protein kinases. J Biol Chem 273:15249–1556

    Article  CAS  PubMed  Google Scholar 

  31. Mohammadi K, Kometiani P, Xie Z et al (2001) Role of protein kinase C in the signal pathways that link Na+/K+-ATPase to ERK1/2. J Biol Chem 276:42050–42056

    Article  CAS  PubMed  Google Scholar 

  32. Barwe SP, Anilkumar G, Moon SY et al (2005) Novel role for Na+/K+-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility. Mol Biol Cell 16:1082–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee YK, Lee SY, Park JR et al (2012) Dysadherin expression promotes the motility and survival of human breast cancer cells by AKT activation. Cancer Sci 103:1280–1289

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuntal Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dey, K., Garty, H., Chakraborti, S. (2016). Emerging Role of Dysadherin in Metastasis. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Membrane Na+-K+ ATPase. Advances in Biochemistry in Health and Disease, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-24750-2_11

Download citation

Publish with us

Policies and ethics