Skip to main content

Significance of Biosurfactants as Antibiofilm Agents in Eradicating Phytopathogens

  • Chapter
  • First Online:
Bacterial Metabolites in Sustainable Agroecosystem

Abstract

Biofilms are complex aggregation of microbial cells which aid the indwelling cells to survive and flourish well in the hostile environments. Besides, biofilms act as multicellular entities and provide resistance toward antibiotics and other bactericidal agents which makes their eradication cumbersome. Biofilm -related infections are tough to treat in healthcare and they are equally important in agriculture as they afflict the crop survival and productivity. It is indeed important to develop a biofilm control strategy to combat biofilm-related infections in agriculture. In recent years, biosurfactants have been exploited as potential antibiofilm candidates to languish the vigor of biofilm formers by selectively eradicating the biofilms. Biosurfactants are the surface active metabolites produced by microbes and are proven to have multifarious role in many fields right from bioremediation to biomedical applications. Biosurfactants due to their surface modifying property, modulate the biofilm forming ability of pathogens which directly prevents microbial colonization and biofilm formation. This chapter summarizes the importance of antibiofilm agents and the role of biosurfactants in eradicating biofilms formed by disease causing pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allan-Wojtas P, Hildebrand PD, Braun PG, Smith-King HL, Carbyn S, Renderos WE (2010) Low temperature and anhydrous electron microscopy techniques to observe the infection process of the bacterial pathogen Xanthomonas fragariae on strawberry leaves. J Microscop 239:249–258

    Article  CAS  Google Scholar 

  • Andersen PC, Brodbeck BV, Oden S, Shriner A, Leite B (2007) Influence of xylem fluid chemistry on planktonic growth, biofilm formation and aggregation of Xylella fastidiosa. FEMS Microbiol Lett 274:210–217

    Article  CAS  PubMed  Google Scholar 

  • Aparna MS, Yadav S (2008) Biofilms: microbes and disease. Braz J Infect Dis 12:526–530

    Article  CAS  PubMed  Google Scholar 

  • Atkinson S, Sockett RE, Camara M, Williams P (2006) Quorum sensing and the lifestyle of Yersinia. Curr Issues Mol Biol 8:1–10

    CAS  PubMed  Google Scholar 

  • Ayala JC, Wang H, Silva AJ, Benitez JA (2015) Repression by H-NS of genes required for the biosynthesis of the Vibrio cholerae biofilm matrix is modulated by the second messenger cyclic diguanylic acid. Mol Microbiol 97:630–645. doi:10.1111/mmi.13058

    PubMed  PubMed Central  Google Scholar 

  • Bahar O, Levi N, Burdman S (2011) The cucurbit pathogenic bacterium Acidovorax citrulli requires a polar flagellum for full virulence before and after host-tissue penetration. Mol Plant Microbe Interact 24:1040–1050

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banat IM, De Rienzo MA, Quinn GA (2014) Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol 98:9915–9929

    Article  CAS  PubMed  Google Scholar 

  • Barth VC Jr, Rodrigues BA, Bonatto GD, Gallo SW, Pagnussatti VE, Ferreira CA, de Oliveira SD (2014) Heterogeneous persister cells formation in Acinetobacter baumannii. PLoS ONE 8:e84361. doi:10.1371/journal.pone.0084361

    Article  CAS  Google Scholar 

  • Branda SS, Vik A, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trend Microbiol 13:20–26

    Article  CAS  Google Scholar 

  • Brandl MT (2006) Fitness of human enteric pathogens on plants and implications for food safety. Annu Rev Phytopathol 44:367–392

    Article  CAS  PubMed  Google Scholar 

  • Burbank L, Mohammadi M, Roper MC (2014) Siderophore-mediated iron acquisition influences motility and is required for full virulence of the xylem-dwelling bacterial phytopathogen Pantoea stewartii subsp. stewartii. Appl Environ Microbiol 81:139–148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Busalmen JP, Vazquez M, de Sanchez SR (2002) New evidences on the catalase mechanism of microbial corrosion. Electrochim Acta 47:1857–1865

    Article  CAS  Google Scholar 

  • Busscher HJ, van Hoogmoed CG, Geertsema-Doornbusch GI, van der Kuijl-Booij M, van der Mei HC (1997) Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. on silicone rubber. Appl Environ Microbiol 63:3810–3817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butt A, Higman VA, Williams C, Crump MP, Hemsley CM, Harmer N, Titball RW (2014) The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation. Biochem J 459:333–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmichael I, Harper IS, Coventry MJ, Taylor PW, Wan J, Hickey MW (1998) Bacterial colonization and biofilm development on minimally processed vegetables. J Appl Microbiol 85(Suppl 1):45S–51S

    Article  PubMed  Google Scholar 

  • Chalupowicz L, Zellermann EM, Fluegel M, Dror O, Eichenlaub R, Gartemann KH, Savidor A, Sessa G, Iraki N, Barash I, Manulis-Sasson S (2012) Colonization and movement of GFP-labeled Clavibacter michiganensis subsp. michiganensis during tomato infection. Phytopathology 102:23–31

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Cao S, Chai Y, Clardy J, Kolter R, Guo JH, Losick R (2012a) A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Mol Microbiol 85:418–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo JH (2012b) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 15:848–864

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiang P, Burrows LL (2003) Biofilm formation by hyperpiliated mutants of Pseudomonas aeruginosa. J Bacteriol 185:2374–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho J, Rogers J, Kearns M, Leslie M, Hartson SD, Wilson KS (2014) Escherichia coli persister cells suppress translation by selectively disassembling and degrading their ribosomes. Mol Microbiol 95:352–364

    Article  PubMed  CAS  Google Scholar 

  • Conlon BP (2014) Staphylococcus aureus chronic and relapsing infections: evidence of a role for persister cells: an investigation of persister cells, their formation and their role in S. aureus disease. BioEssays 36:991–996

    Article  PubMed  Google Scholar 

  • Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crossman L, Dow JM (2004) Biofilm formation and dispersal in Xanthomonas campestris. Microbes Infect 6:623–629

    Article  CAS  PubMed  Google Scholar 

  • Danese PN, Pratt LA, Kolter R (2000) Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182:3593–3596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    Article  CAS  PubMed  Google Scholar 

  • Das P, Mukherjee S, Sen R (2009) Anti-adhesive action of a marine microbial surfactant. Colloids Surf B Biointerfaces 71:183–186

    Article  CAS  PubMed  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122

    Article  CAS  PubMed  Google Scholar 

  • Diaz DRMA, Banat IM, Dolman B, Winterburn J, Martin PJ (2015) Sophorolipid biosurfactants: possible uses as antibacterial and antibiofilm agent. N Biotechnol pii S1871–6784(15):00034–00035. doi:10.1016/j.nbt.2015.02.009

    Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    Article  PubMed  PubMed Central  Google Scholar 

  • Dressaire C, Moreira RN, Barahona S, Alves de Matos AP, Arraiano CM (2015) BolA is a transcriptional switch that turns off motility and turns on biofilm development. Mol Biol 6:e02352-02314

    Google Scholar 

  • Drlica K, Malik M, Kerns RJ, Zhao X (2008) Quinolone-mediated bacterial death. Antimicrob Agents Chemother 52:385–392

    Article  CAS  PubMed  Google Scholar 

  • Dusane DH, Dam S, Nancharaiah YV, Kumar AR, Venugopalan VP, Zinjarde SS (2012) Disruption of Yarrowia lipolytica biofilms by rhamnolipid biosurfactant. Aquat Biosyst 8:17. doi:10.1186/2046-9063-8-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edmunds AC, Castiblanco LF, Sundin GW, Waters CM (2013) Cyclic Di-GMP modulates the disease progression of Erwinia amylovora. J Bacteriol 195:2155–2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farinha MA, Conway BD, Glasier LM, Ellert NW, Irvin RT, Sherburne R, Paranchych W (1994) Alteration of the pilin adhesin of Pseudomonas aeruginosa PAO results in normal pilus biogenesis but a loss of adherence to human pneumocyte cells and decreased virulence in mice. Infect Immun 62:4118–4123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  PubMed  Google Scholar 

  • Fletcher M, Loeb GI (1979) Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Appl Environ Microbiol 37:67–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fox EP, Bui CK, Nett JE, Hartooni N, Mui MC, Andes DR, Nobile CJ, Johnson AD (2015) An expanded regulatory network temporally controls Candida albicans biofilm formation. Mol Microbiol 96:1226–1239. doi:10.1111/mmi.13002

    PubMed  PubMed Central  Google Scholar 

  • Franklin MJ, Ohman DE (1993) Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. J Bacteriol 175:5057–5065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galiana E, Fourre S, Engler G (2008) Phytophthora parasitica biofilm formation: installation and organization of microcolonies on the surface of a host plant. Environ Microbiol 10:2164–2171

    Article  PubMed  Google Scholar 

  • Gartemann KH, Kirchner O, Engemann J, Grafen I, Eichenlaub R, Burger A (2003) Clavibacter michiganensis subsp. michiganensis: first steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. J Biotechnol 106:179–191

    Article  CAS  PubMed  Google Scholar 

  • Golmohammadi M, Cubero J, Penalver J, Quesada JM, Lopez MM, Llop P (2007) Diagnosis of Xanthomonas axonopodis pv. citri, causal agent of citrus canker, in commercial fruits by isolation and PCR-based methods. J Appl Microbiol 103:2309–2315

    Article  CAS  PubMed  Google Scholar 

  • Goo KS, Sim TS (2010) Designing new beta-lactams: implications from their targets, resistance factors and synthesizing enzymes. Curr Comput Aided Drug Des 7:53–80

    Article  Google Scholar 

  • Gotoh N (2001) Antibiotic resistance caused by membrane impermeability and multidrug efflux systems. Nihon Rinsho 59:712–718

    CAS  PubMed  Google Scholar 

  • Guilhabert MR, Kirkpatrick BC (2005) Identification of Xylella fastidiosa antivirulence genes: hemagglutinin adhesins contribute a biofilm maturation to X. fastidios and colonization and attenuate virulence. Mol Plant Microbe Interact 18:856–868

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  PubMed  Google Scholar 

  • Hamon MA, Stanley NR, Britton RA, Grossman AD, Lazazzera BA (2004) Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Mol Microbiol 52:847–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie KR, Heurlier K (2008) Establishing bacterial communities by ‘word of mouth’: LuxS and autoinducer 2 in biofilm development. Nat Rev Microbiol 6:635–643

    Article  CAS  PubMed  Google Scholar 

  • Heckel BC, Tomlinson AD, Morton ER, Choi JH, Fuqua C (2014) Agrobacterium tumefaciens exoR controls acid response genes and impacts exopolysaccharide synthesis, horizontal gene transfer, and virulence gene expression. J Bacteriol 196:3221–3233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herrera CM, Koutsoudis MD, Wang X, von Bodman SB (2008) Pantoea stewartii subsp. stewartii exhibits surface motility, which is a critical aspect of Stewart’s wilt disease development on maize. Mol Plant Microbe Interact 21:1359–1370

    Article  CAS  PubMed  Google Scholar 

  • Heydorn A, Ersboll B, Kato J, Hentzer M, Parsek MR, Tolker-Nielsen T, Givskov M, Molin S (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68:2008–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CT, Yu FP, McFeters GA, Stewart PS (1995) Nonuniform spatial patterns of respiratory activity within biofilms during disinfection. Appl Environ Microbiol 61:2252–2256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M, Molin S, Eberl L (2001) The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147:2517–2528

    Article  CAS  PubMed  Google Scholar 

  • Irie Y, O’Toole GA, Yuk MH (2005) Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiol Lett 250:237–243

    Article  CAS  PubMed  Google Scholar 

  • Jacobs JL, Fasi AC, Ramette A, Smith JJ, Hammerschmidt R, Sundin GW (2008) Identification and onion pathogenicity of Burkholderia cepacia complex isolates from the onion rhizosphere and onion field soil. Appl Environ Microbiol 74:3121–3129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn CE, Selimi DA, Barak JD, Charkowski AO (2011) The Dickeya dadantii biofilm matrix consists of cellulose nanofibres, and is an emergent property dependent upon the type III secretion system and the cellulose synthesis operon. Microbiology 157:2733–2744

    Article  CAS  PubMed  Google Scholar 

  • Janek T, Lukaszewicz M, Krasowska A (2012) Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol 12:24. doi:10.1186/1471-2180-12-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarrett CO, Deak E, Isherwood KE, Oyston PC, Fischer ER, Whitney AR, Kobayashi SD, DeLeo FR, Hinnebusch BJ (2004) Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis 190:783–792

    Article  PubMed  Google Scholar 

  • Jones JB, Bouzar H, Somodi GC, Stall RE, Pernezny K, El-Morsy G, Scott JW (1998) Evidence for the preemptive nature of tomato race 3 of Xanthomonas campestris pv. vesicatoria in florida. Phytopathology 88:33–38

    Article  CAS  PubMed  Google Scholar 

  • Joshua GW, Guthrie-Irons C, Karlyshev AV, Wren BW (2006) Biofilm formation in Campylobacter jejuni. Microbiology 152:387–396

    Article  CAS  PubMed  Google Scholar 

  • Jubair M, Morris JG Jr, Ali A (2012) Survival of Vibrio cholerae in nutrient-poor environments is associated with a novel “persister” phenotype. PLoS ONE 7:e45187. doi:10.1371/journal.pone.0045187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalmokoff M, Lanthier P, Tremblay TL, Foss M, Lau PC, Sanders G, Austin J, Kelly J, Szymanski CM (2006) Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bacteriol 188:4312–4320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keisa A, Kanberga-Silina K, Nakurte I, Kunga L, Rostoks N (2011) Differential disease resistance response in the barley necrotic mutant nec1. BMC Plant Biol 11:66. doi:10.1186/1471-2229-11-66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Kang WS, Yun SC (2014) Development of a model to predict the primary infection date of bacterial spot (Xanthomonas campestris pv. vesicatoria) on hot pepper. Plant Pathol J 30:125–135

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiran GS, Ninawe AS, Lipton AN, Pandian V, Selvin J (2015) Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource. Crit Rev Biotechnol 2:1–17

    Google Scholar 

  • Kiran GS, Nishanth LA, Priyadharshini S, Anitha K, Selvin J (2014) Effect of Fe nanoparticle on growth and glycolipid biosurfactant production under solid state culture by marine Nocardiopsis sp. MSA13A. BMC Biotechnol 14:48. doi:10.1186/1472-6750-14-48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kiran GS, Sabarathnam B, Selvin J (2010) Biofilm disruption potential of a glycolipid biosurfactant from marine Brevibacterium casei. FEMS Immunol Med Microbiol 59:432–438

    Article  CAS  PubMed  Google Scholar 

  • Knudsen GM, Ng Y, Gram L (2013) Survival of bactericidal antibiotic treatment by a persister subpopulation of Listeria monocytogenes. Appl Environ Microbiol 79:7390–7397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolter R, Greenberg EP (2006) Microbial sciences: the superficial life of microbes. Nature 441:300–302

    Article  CAS  PubMed  Google Scholar 

  • Koutsoudis MD, Tsaltas D, Minogue TD, von Bodman SB (2006) Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proc Natl Acad Sci USA 103:5983–5988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroupitski Y, Pinto R, Brandl MT, Belausov E, Sela S (2009) Interactions of Salmonella enterica with lettuce leaves. J Appl Microbiol 106:1876–1885

    Article  CAS  PubMed  Google Scholar 

  • Kruijt M, Tran H, Raaijmakers JM (2009) Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. J Appl Microbiol 107:546–556

    Article  CAS  PubMed  Google Scholar 

  • Kubheka GC, Coutinho TA, Moleleki N, Moleleki LN (2013) Colonization patterns of an mCherry-tagged Pectobacterium carotovorum subsp. brasiliense strain in potato plants. Phytopathology 103:1268–1279

    Article  CAS  PubMed  Google Scholar 

  • Kuiper I, Lagendijk EL, Pickford R, Derrick JP, Lamers GE, Thomas-Oates JE, Lugtenberg BJ, Bloemberg GV (2004) Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol 51:97–113

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Worobec EA (2002) Fluoroquinolone resistance of Serratia marcescens: involvement of a proton gradient-dependent efflux pump. J Antimicrob Chemother 50:593–596

    Article  CAS  PubMed  Google Scholar 

  • Lasa I, Penadés JR (2006) Bap: a family of surface proteins involved in biofilm formation. Res Microbiol 157:99–107

    Article  CAS  PubMed  Google Scholar 

  • Leclercq R, Courvalin P (1991) Bacterial resistance to macrolide, lincosamide and streptogramin antibiotics by target modification. Antimicrob Agents Chemother 35:1267–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DH, Lim JA, Lee J, Roh E, Jung K, Choi M, Oh C, Ryu S, Yun J, Heu S (2013) Characterization of genes required for the pathogenicity of Pectobacterium carotovorum subsp. carotovorum Pcc21 in Chinese cabbage. Microbiology 159:1487–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leid JG, Shirtliff ME, Costerton JW, Stoodley P (2002) Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun 70:6339–6345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK (2005) The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 175:7512–7518

    Article  CAS  PubMed  Google Scholar 

  • Licciardello G, Bertani I, Steindler L, Bella P, Venturi V, Catara V (2007) Pseudomonas corrugata contains a conserved N-acyl homoserine lactone quorum sensing system; its role in tomato pathogenicity and tobacco hypersensitivity response. FEMS Microbiol Ecol 61:222–234

    Article  CAS  PubMed  Google Scholar 

  • Liu NT, Nou X, Bauchan GR, Murphy C, Lefcourt AM, Shelton DR, Lo YM (2015) Effects of environmental parameters on the dual-species biofilms formed by Escherichia coli O157:H7 and Ralstonia insidiosa, a strong biofilm producer isolated from a fresh-cut produce processing plant. J Food Prot 78:121–127

    Article  CAS  PubMed  Google Scholar 

  • Lu XH, An SQ, Tang DJ, McCarthy Y, Tang JL, Dow JM, Ryan RP (2012) RsmA regulates biofilm formation in Xanthomonas campestris through a regulatory network involving cyclic di-GMP and the Clp transcription factor. PLoS ONE 7:e52646. doi:10.1371/journal.pone.0052646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luna JM, Rufino RD, Sarubbo LA, Rodrigues LR, Teixeira JA, de Campos-Takaki GM (2011) Evaluation antimicrobial and antiadhesive properties of the biosurfactant Lunasan produced by Candida sphaerica UCP 0995. Curr Microbiol 62:1527–1534

    Article  CAS  PubMed  Google Scholar 

  • Mack D, Rohde H, Dobinsky S, Riedewald J, Nedelmann M, Knobloch JK, Elsner HA, Feucht HH (2000) Identification of three essential regulatory gene loci governing expression of Staphylococcus epidermidis polysaccharide intercellular adhesin and biofilm formation. Infect Immun 68:3799–3807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mah TF (2012) Biofilm-specific antibiotic resistance. Future Microbiol 7:1061–1072

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari DK (2013) Bacteria in agrobiology: disease management. Springer, Heidelberg. ISBN 978-3-642-33639-3

    Book  Google Scholar 

  • Malamud F, Torres PS, Roeschlin R, Rigano LA, Enrique R, Bonomi HR, Castagnaro AP, Marano MR, Vojnov AA (2010) The Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development. Microbiology 157:819–829

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Gil M, Yousef-Coronado F, Espinosa-Urgel M (2010) LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture. Mol Microbiol 77:549–561

    Article  CAS  PubMed  Google Scholar 

  • McCarthy Y, Ryan RP, O’Donovan K, He YQ, Jiang BL, Feng JX, Tang JL, Dow JM (2008) The role of PilZ domain proteins in the virulence of Xanthomonas campestris pv. campestris. Mol Plant Pathol 9:819–824

    Article  CAS  PubMed  Google Scholar 

  • McNally RR, Toth IK, Cock PJ, Pritchard L, Hedley PE, Morris JA, Zhao Y, Sundin GW (2011) Genetic characterization of the HrpL regulon of the fire blight pathogen Erwinia amylovora reveals novel virulence factors. Mol Plant Pathol 13:160–173

    Article  PubMed  Google Scholar 

  • Meric G, Kemsley EK, Falush D, Saggers EJ, Lucchini S (2012) Phylogenetic distribution of traits associated with plant colonization in Escherichia coli. Environ Microbiol 15:487–501

    Article  PubMed  CAS  Google Scholar 

  • Mireles JR 2nd, Toguchi A, Harshey RM (2001) Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183:5848–5854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteiro AS, Miranda TT, Lula I, Denadai AM, Sinisterra RD, Santoro MM, Santos VL (2011) Inhibition of Candida albicans CC biofilms formation in polystyrene plate surfaces by biosurfactant produced by Trichosporon montevideense CLOA72. Colloids Surf B Biointerfaces 84:467–476

    Article  CAS  PubMed  Google Scholar 

  • Morton ER, Fuqua C (2012) Phenotypic analyses of Agrobacterium. In: Current protocols in microbiology Chapter 3: unit 3D, vol 3. Wiley, New York

    Google Scholar 

  • Mukhtar TA, Wright GD (2005) Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. Chem Rev 105:529–542

    Article  CAS  PubMed  Google Scholar 

  • Muranaka LS, Giorgiano TE, Takita MA, Forim MR, Silva LF, Coletta-Filho HD, Machado MA, de Souza AA (2013) N-acetylcysteine in agriculture, a novel use for an old molecule: focus on controlling the plant-pathogen Xylella fastidiosa. PLoS ONE 8:e72937. doi:10.1371/journal.pone.0072937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadell CD, Xavier JB, Levin SA, Foster KR (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6:e14. doi:10.1371/journal.pbio.0060014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niba ET, Naka Y, Nagase M, Mori H, Kitakawa M (2007) A genome-wide approach to identify the genes involved in biofilm formation in E. coli. DNA Res 14:237–246

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  PubMed  Google Scholar 

  • Ozanne B, Benveniste R, Tipper D, Davies J (1969) Aminoglycoside antibiotics: inactivation by phosphorylation in Escherichia coli carrying R factors. J Bacteriol 100:1144–1146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Padmavathi AR, Abinaya B, Pandian SK (2014) Phenol 2,4-bis(1,1-dimethylethyl) of marine bacterial origin inhibits quorum sensing mediated biofilm formation in the uropathogen Serratia marcescens. Biofouling 30:1111–1122

    Article  CAS  PubMed  Google Scholar 

  • Padmavathi AR, Pandian SK (2014) Antibiofilm activity of biosurfactant producing coral associated bacteria isolated from Gulf of Mannar. Indian J Microbiol 54:376–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HJ, Jung HW, Han SW (2014) Functional and proteomic analyses reveal that wxcB is involved in virulence, motility, detergent tolerance, and biofilm formation in Xanthomonas campestris pv. vesicatoria. Biochem Biophys Res Commun 452:389–394

    Article  CAS  PubMed  Google Scholar 

  • Patel J, Singh M, Macarisin D, Sharma M, Shelton D (2013) Differences in biofilm formation of produce and poultry Salmonella enterica isolates and their persistence on spinach plants. Food Microbiol 36:388–394

    Article  PubMed  Google Scholar 

  • Penaloza-Vazquez A, Sreedharan A, Bender CL (2010) Transcriptional studies of the hrpM/opgH gene in Pseudomonas syringae during biofilm formation and in response to different environmental challenges. Environ Microbiol 12:1452–1467

    CAS  PubMed  Google Scholar 

  • Pradhan AK, Pradhan N, Mall G, Panda HT, Sukla LB, Panda PK, Mishra BK (2013a) Application of lipopeptide biosurfactant isolated from a halophile: Bacillus tequilensis CH for inhibition of biofilm. Appl Biochem Biotechnol 171:1362–1375

    Article  CAS  PubMed  Google Scholar 

  • Pradhan AK, Pradhan N, Sukla LB, Panda PK, Mishra BK (2013b) Inhibition of pathogenic bacterial biofilm by biosurfactant produced by Lysinibacillus fusiformis S9. Bioprocess Biosyst Eng 37:139–149

    Article  PubMed  CAS  Google Scholar 

  • Purcino RP, Medina CL, Martins de Souza D, Winck FV, Machado EC, Novello JC, Machado MA, Mazzafera P (2007) Xylella fastidiosa disturbs nitrogen metabolism and causes a stress response in sweet orange Citrus sinensis cv. Pera. J Exp Bot 58:2733–2744

    Article  CAS  PubMed  Google Scholar 

  • Qian G, Zhou Y, Zhao Y, Song Z, Wang S, Fan J, Hu B, Venturi V, Liu F (2013) Proteomic analysis reveals novel extracellular virulence-associated proteins and functions regulated by the diffusible signal factor (DSF) in Xanthomonas oryzae pv. oryzicola. J Proteome Res 12:3327–3341

    Article  CAS  PubMed  Google Scholar 

  • Quinn GA, Maloy AP, Banat MM, Banat IM (2013) A comparison of effects of broad-spectrum antibiotics and biosurfactants on established bacterial biofilms. Curr Microbiol 67:614–623

    Article  CAS  PubMed  Google Scholar 

  • Quinn GA, Maloy AP, McClean S, Carney B, Slater JW (2012) Lipopeptide biosurfactants from Paenibacillus polymyxa inhibit single and mixed species biofilms. Biofouling 28:1151–1166

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran R, Burke AK, Cormier G, Jensen RV, Stevens AM (2014) Transcriptome-based analysis of the Pantoea stewartii quorum-sensing regulon and identification of EsaR direct targets. Appl Environ Microbiol 80:5790–5800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rautela R, Singh AK, Shukla A, Cameotra SS (2014) Lipopeptides from Bacillus strain AR2 inhibits biofilm formation by Candida albicans. Antonie Van Leeuwenhoek 105:809–821

    Article  CAS  PubMed  Google Scholar 

  • Raya A, Sodagari M, Pinzon NM, He X, Zhang Newby BM, Ju LK (2010) Effects of rhamnolipids and shear on initial attachment of Pseudomonas aeruginosa PAO1 in glass flow chambers. Environ Sci Pollut Res Int 17:1529–1538

    Article  CAS  PubMed  Google Scholar 

  • Rich JJ, Willis DK (1997) Multiple loci of Pseudomonas syringae pv. syringae are involved in pathogenicity on bean: restoration of one lesion-deficient mutant requires two tRNA genes. J Bacteriol 179:2247–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigano LA, Siciliano F, Enrique R, Sendin L, Filippone P, Torres PS, Questa J, Dow JM, Castagnaro AP, Vojnov AA, Marano MR (2007) Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Mol Plant Microbe Interact 20:1222–1230

    Article  CAS  PubMed  Google Scholar 

  • Rivardo F, Martinotti MG, Turner RJ, Ceri H (2011) Synergistic effect of lipopeptide biosurfactant with antibiotics against Escherichia coli CFT073 biofilm. Int J Antimicrob Agents 37:324–331

    Article  CAS  PubMed  Google Scholar 

  • Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83:541–553

    Article  CAS  PubMed  Google Scholar 

  • Ronconi MC, Merino LA, Fernandez G (2002) Detection of Enterococcus with high-level aminoglycoside and glycopeptide resistance in Lactuca sativa (lettuce). Enferm Infecc Microbiol Clin 20:380–383

    Article  PubMed  Google Scholar 

  • Roper MC (2011) Pantoea stewartii subsp. stewartii: lessons learned from a xylem-dwelling pathogen of sweet corn. Mol Plant Pathol 12:628–637

    Article  CAS  PubMed  Google Scholar 

  • Rufino RD, Luna JM, Sarubbo LA, Rodrigues LR, Teixeira JA, Campos-Takaki GM (2011) Antimicrobial and anti-adhesive potential of a biosurfactant Rufisan produced by Candida lipolytica UCP 0988. Colloids Surf B Biointerfaces 84:1–5

    Article  CAS  PubMed  Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salehi R, Savabi O, Kazemi M, Kamali S, Salehi AR, Eslami G, Tahmourespour A (2014) Effects of Lactobacillus reuteri-derived biosurfactant on the gene expression profile of essential adhesion genes (gtfB, gtfC and ftf) of Streptococcus mutans. Adv Biomed Res 3:169. doi:10.4103/2277-9175.139134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sambanthamoorthy K, Feng X, Patel R, Patel S, Paranavitana C (2014) Antimicrobial and antibiofilm potential of biosurfactants isolated from Lactobacilli against multi-drug-resistant pathogens. BMC Microbiol 14:197. doi:10.1186/1471-2180-14-197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savabi O, Kazemi M, Kamali S, Salehi AR, Eslami G, Tahmourespour A, Salehi R (2014) Effects of biosurfactant produced by Lactobacillus casei on gtfB, gtfC, and ftf gene expression level in S. mutans by real-time RT-PCR. Adv. Biomed Res 3:231. doi:10.4103/2277-9175.145729

    Google Scholar 

  • Schramm A, Larsen LH, Revsbech NP, Ramsing NB, Amann R, Schleifer KH (1996) Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol 62:4641–4647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shemesh M, Tam A, Steinberg D (2007) Expression of biofilm-associated genes of Streptococcus mutans in response to glucose and sucrose. J Med Microbiol 56:1528–1535

    Article  CAS  PubMed  Google Scholar 

  • Shrestha RK, Rosenberg T, Makarovsky D, Eckshtain-Levi N, Zelinger E, Kopelowitz J, Sikorski J, Burdman S (2013) Phenotypic variation in the plant pathogenic bacterium Acidovorax citrulli. PLoS ONE 8:e73189. doi:10.1371/journal.pone.0073189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh N, Pemmaraju SC, Pruthi PA, Cameotra SS, Pruthi V (2013) Candida biofilm disrupting ability of di-rhamnolipid (RL-2) produced from Pseudomonas aeruginosa DSVP20. Appl Biochem Biotechnol 169:2374–2391

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764

    Article  CAS  PubMed  Google Scholar 

  • Sloan GP, Love CF, Sukumar N, Mishra M, Deora R (2007) The Bordetella Bps polysaccharide is critical for biofilm development in the mouse respiratory tract. J Bacteriol 189:8270–8276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza LC, Wulff NA, Gaurivaud P, Mariano AG, Virgilio AC, Azevedo JL, Monteiro PB (2006) Disruption of Xylella fastidiosa CVC gumB and gumF genes affects biofilm formation without a detectable influence on exopolysaccharide production. FEMS Microbiol Lett 257:236–242

    Article  CAS  PubMed  Google Scholar 

  • Spoering AL, Gilmore MS (2006) Quorum sensing and DNA release in bacterial biofilms. Curr Opin Microbiol 9:133–137

    Article  CAS  PubMed  Google Scholar 

  • Sriram MI, Kalishwaralal K, Deepak V, Gracerosepat R, Srisakthi K, Gurunathan S (2011) Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids Surf B Biointerfaces 85:174–181

    Article  CAS  PubMed  Google Scholar 

  • Srivastava D, Waters CM (2012) A tangled web: regulatory connections between quorum sensing and cyclic Di-GMP. J Bacteriol 194:4485–4493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  CAS  PubMed  Google Scholar 

  • Stickler DJ, Morris NS, McLean RJ, Fuqua C (1998) Biofilms on indwelling urethral catheters produce quorum-sensing signal molecules in situ and in vitro. Appl Environ Microbiol 64:3486–3490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I (2002) Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29:361–367

    Article  CAS  PubMed  Google Scholar 

  • Subramoni S, Nguyen DT, Sokol PA (2011) Burkholderia cenocepacia ShvR-regulated genes that influence colony morphology, biofilm formation, and virulence. Infect Immun 79:2984–2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland IW (2001) The biofilm matrix-an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227

    Article  CAS  PubMed  Google Scholar 

  • Tahmourespour A, Salehi R, Kasra Kermanshahi R (2011a) Lactobacillus acidophilus-derived biosurfactant effect on GTFB and GTFC expression level in Streptococcus mutans biofilm cells. Braz J Microbiol 42:330–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahmourespour A, Salehi R, Kermanshahi RK, Eslami G (2011b) The anti-biofouling effect of Lactobacillus fermentum-derived biosurfactant against Streptococcus mutans. Biofouling 27:385–392

    Article  CAS  PubMed  Google Scholar 

  • Tao F, Swarup S, Zhang LH (2010) Quorum sensing modulation of a putative glycosyltransferase gene cluster essential for Xanthomonas campestris biofilm formation. Environ Microbiol 12:3159–3170

    Article  CAS  PubMed  Google Scholar 

  • Tao J, He C (2010) Response regulator, VemR, positively regulates the virulence and adaptation of Xanthomonas campestris pv. campestris. FEMS Microbiol Lett 304:20–28

    Article  CAS  PubMed  Google Scholar 

  • Tielen P, Strathmann M, Jaeger KE, Flemming HC, Wingender J (2005) Alginate acetylation influences initial surface colonization by mucoid Pseudomonas aeruginosa. Microbiol Res 160:165–176

    Article  CAS  PubMed  Google Scholar 

  • Torres PS, Malamud F, Rigano LA, Russo DM, Marano MR, Castagnaro AP, Zorreguieta A, Bouarab K, Dow JM, Vojnov AA (2007) Controlled synthesis of the DSF cell-cell signal is required for biofilm formation and virulence in Xanthomonas campestris. Environ Microbiol 9:2101–2109

    Article  PubMed  PubMed Central  Google Scholar 

  • Toth IK, Bell KS, Holeva MC, Birch PR (2003) Soft rot Erwiniae: from genes to genomes. Mol Plant Pathol 4:17–30

    Article  CAS  PubMed  Google Scholar 

  • Tran H, Ficke A, Asiimwe T, Hofte M, Raaijmakers JM (2007) Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175:731–742

    Article  CAS  PubMed  Google Scholar 

  • Tsang JC, Sansing GA, Miller MA (1975) Relation of beta-lactamase activity to antimicrobial susceptibility in Serratia marcescens. Antimicrob Agents Chemother 8:277–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ (2006) Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 8:1997–2011

    Article  CAS  PubMed  Google Scholar 

  • Valle J, Latasa C, Gil C, Toledo-Arana A, Solano C, Penades JR, Lasa I (2012) Bap, a biofilm matrix protein of Staphylococcus aureus prevents cellular internalization through binding to GP96 host receptor. PLoS Pathog 8:e1002843. doi:10.1371/journal.ppat.1002843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, Deziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM (2004) Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol 134:320–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watnick PI, Kolter R (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34:586–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Q, Ma LZ (2013) Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci 14:20983–21005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

    Article  CAS  PubMed  Google Scholar 

  • Wilking JN, Zaburdaev V, De Volder M, Losick R, Brenner MP, Weitz DA (2013) Liquid transport facilitated by channels in Bacillus subtilis biofilms. Proc Natl Acad Sci USA 110:848–852

    Article  CAS  PubMed  Google Scholar 

  • Wozniak DJ, Wyckoff TJ, Starkey M, Keyser R, Azadi P, O’Toole GA, Parsek MR (2003) Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci USA 100:7907–7912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu MC, Lin TL, Hsieh PF, Yang HC, Wang JT (2011) Isolation of genes involved in biofilm formation of a Klebsiella pneumoniae strain causing pyogenic liver abscess. PLoS ONE 6:e23500. doi:10.1371/journal.pone.0023500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang B, Bogdanove A (2012) Inoculation and virulence assay for bacterial blight and bacterial leaf streak of rice. Methods Mol Biol 956:249–255

    Article  CAS  Google Scholar 

  • Yao J, Allen C (2007) The plant pathogen Ralstonia solanacearum needs aerotaxis for normal biofilm formation and interactions with its tomato host. J Bacteriol 189:6415–6424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaron S, Romling U (2014) Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb Biotechnol 7:496–516

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaini PA, De La Fuente L, Hoch HC, Burr TJ (2009) Grapevine xylem sap enhances biofilm development by Xylella fastidiosa. FEMS Microbiol Lett 295:129–134

    Article  CAS  PubMed  Google Scholar 

  • Zogaj X, Nimtz M, Rohde M, Bokranz W, Romling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunmugiah Karutha Pandian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Padmavathi, A.R., Bakkiyaraj, D., Pandian, S.K. (2015). Significance of Biosurfactants as Antibiofilm Agents in Eradicating Phytopathogens. In: Maheshwari, D. (eds) Bacterial Metabolites in Sustainable Agroecosystem. Sustainable Development and Biodiversity, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-24654-3_12

Download citation

Publish with us

Policies and ethics