Skip to main content

Surface Plasmon Polariton Assisted Optical Switching in Noble Metal Nanoparticle Systems: A Sub-Band Gap Approach

  • Chapter
  • First Online:
Reviews in Plasmonics 2015

Part of the book series: Reviews in Plasmonics ((RIP,volume 2015))

  • 1678 Accesses

Abstract

Understanding the light-matter interaction at nanometre scale is a fundamental issue in optoelectronics and nanophotonics which are prerequisites for advanced sensor applications of optical switching. The electrical transport process in noble metal-insulator nanocomposite or dispersed noble metal nanocluster in dielectric matrix is discussed. Banking on high value of third-order nonlinear susceptibility, optical switching was reported in the percolation threshold of noble metals in dielectric matrices. The optical switching originating from the excitation of the surface plasmon was recorded for metal–oxide–metal tunnelling junctions. The surface plasma polariton (SPP) in the form of drifting hot electrons across the oxide barrier and tunnelling to the counter electrode in the evanescent field of surface plasmon resonance (SPR) was made responsible for electrical transport mechanism. These models, for the first time, are discussed in ambit of having a sub-band gap feature in the SPP assisted photoresponse where transport of electrical carriers may manifest either at the percolation threshold with enhanced electro-magnetic field, and in the form of tunnelling current through the potential barrier at the Fermi level or in the propagation of plasmon coupled electrons at SPR for metal-dielectric composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MacDonald KF, Samson ZL, Stockman MI, Zheludev NI (2009) Ultrafast active plasmonics. Nat Photonics 3:55–58

    Article  CAS  Google Scholar 

  2. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

    Article  CAS  Google Scholar 

  3. Bouhelier A, Bachelot R, Lerondel G, Kostcheev S, Royer P, Wiederrecht GP (2005) Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys Rev Lett 95:267405

    Article  CAS  PubMed  Google Scholar 

  4. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  PubMed  Google Scholar 

  5. Sonnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23:741–745

    Article  PubMed  Google Scholar 

  6. Verhagen E, Spasenović M, Polman A, Kuipers L (2008) Nanowire plasmon excitation by adiabatic mode transformation. Phys Rev Lett 102:203904

    Article  Google Scholar 

  7. Inouye H, Tanaka K, Tanahashi I, Hattori T, Nakatsuka H (2000) Ultrafast optical switching in silver nanoparticle system. Jpn J Appl Phys 39:5132–5133

    Article  CAS  Google Scholar 

  8. Inouye H, Tanaka K, Kondo Y, Hirao K (1998) Femto second Optical Kerr effect in the gold nanoparticle system. Jpn J Appl Phys 37:L1520–L1522

    Article  Google Scholar 

  9. Liao HB, Xiao RF, Fu JS, Yu P, Wong GKL, Sheng P (1997) Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold. Appl Phys Lett 70:1–3

    Article  CAS  Google Scholar 

  10. Haglund RF Jr, Yang L, Magruder RH III, Wittig JE, Becker K (1993) Picosecond nonlinear optical response of a Cu:silica nanocluster composite. Opt Lett 18:373–375

    Article  CAS  PubMed  Google Scholar 

  11. Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229–232

    Article  CAS  PubMed  Google Scholar 

  12. Andrew P, Barnes WL (2004) Energy transfer across a metal film mediated by surface plasmon polaritons. Science 306:1002–1005

    Article  CAS  PubMed  Google Scholar 

  13. Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98:011101

    Article  Google Scholar 

  14. Aihara T, Fukuhara M, Takeda A, Lim B, Futagawa M, Ishii Y, Sawada K, Fukuda M (2013) Monolithic integration of surface plasmon detector and metal-oxide-semiconductor field-effect transistors. IEEE Photonics J 5:6800609

    Article  Google Scholar 

  15. Bozhevolni S, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511

    Article  Google Scholar 

  16. Lezec HJ, Degiron A, Devaux E, Linke RA, Martin-Moreno L, Garcia-Vidal FJ, Ebbesen TW (2002) Beaming light from a subwavelength aperture. Science 297:820–822

    Article  CAS  PubMed  Google Scholar 

  17. Lewis A, Isaacson M, Harootunian A, Murray A (1984) Development of a 500 Å spatial resolution light microscope I. Light is efficiently transmitted through λ/16 diameter apertures. Ultramicroscopy 13:227–232

    Article  Google Scholar 

  18. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969

    Article  CAS  PubMed  Google Scholar 

  19. Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534–537

    Article  CAS  PubMed  Google Scholar 

  20. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    Article  CAS  PubMed  Google Scholar 

  21. Harootunian A, Betzig E, Isaacson MS, Lewis A (1986) Superresolution fluorescence near-field scanning optical microscopy (NSOM). Appl Phys Lett 49:674–676

    Article  CAS  Google Scholar 

  22. Betzig E, Harootunian A, Lewis A, Isaacson M (1986) Near-field diffraction from a slit: implications for superresolution microscopy. Appl Optics 25:1890–1900

    Article  CAS  Google Scholar 

  23. Kim S, Jin J, Kim Y-J, Park I-Y, Kim Y, Kim S-W (2008) High-harmonic generation by resonant plasmon field enhancement. Nature 453:757–760

    Article  CAS  PubMed  Google Scholar 

  24. McMahon MD, Lopez R, Haglund RF Jr, Ray EA, Bunton PH (2006) Second-harmonic generation from arrays of symmetric gold nanoparticles. Phys Rev B 73:041401

    Article  Google Scholar 

  25. Bouhelier A, Beversluis M, Hartschuh A, Novotny L (2003) Near-field second-harmonic generation induced by local field enhancement. Phys Rev Lett 90:013903

    Article  CAS  PubMed  Google Scholar 

  26. Hubert C, Billot L, Adam P-M, Bachelot R, Royer P, Grand J, Gindre D, Dorkenoo KD, Fort A (2007) Surface plasmon spectralcharacteristics of second harmonic generation in gold nanorods. Appl Phys Lett 90:181105–181107

    Article  Google Scholar 

  27. Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  PubMed  Google Scholar 

  28. Bailoa E, Deckert V (2008) Tip-enhanced Raman scattering. Chem Soc Rev 37:921–930

    Article  Google Scholar 

  29. Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, Aizpurua J, Luo Y et al (2013) Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498:82–86

    Article  CAS  PubMed  Google Scholar 

  30. Brongersma ML, Hartman JW, Atwater HA (2000) Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys Rev B 62:R16356–R16359

    Article  CAS  Google Scholar 

  31. Quinten M, Leitner A, Krenn JR, Aussenegg FR (1998) Electromagnetic energy transport via linear chains of silver nanoparticles. Opt Lett 23:1331–1333

    Article  CAS  PubMed  Google Scholar 

  32. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu MS, Chen HL, Shen CH, Hong LS, Huang BR, Chen KH, Chen LC (2006) Photosensitive gold nanoparticle-embedded dielectric nanowires. Nat Mater 5:102–106

    Article  CAS  PubMed  Google Scholar 

  34. Dhara S, Lu C-Y, Chen K-H (2015) Plasmonic switching in Au functionalized GaN nanowires in the realm of surface plasmon polatriton propagation : a single nanowire switching device. Plasmonics 10:347–350

    Article  CAS  Google Scholar 

  35. Kruss S, Srot V, van Aken PA, Spatz JP (2011) Au–Ag hybrid nanoparticle patterns of tunable size and density on glass and polymeric supports. Langmuir 28:1562–1568

    Article  PubMed  Google Scholar 

  36. Karthikeyan B (2012) Optical studies on thermally surface plasmon tuned Au, Ag and Au:Ag nanocomposite polymer films. Spectrochim Acta A Mol Biomol Spectrosc 96:456–460

    Article  CAS  PubMed  Google Scholar 

  37. Xu L, Tan LS, Hong MH (2011) Tuning of localized surface plasmon resonance of well-ordered Ag/Au bimetallic nanodot arrays by laser interference lithography and thermal annealing. Appl Optics 50:G74–G79

    Article  CAS  Google Scholar 

  38. Tuan NA, Mizutani G (2009) Metal-interface second harmonic generation from pt/cu bimetallic nanowire arrays on NaCl(110) faceted templates. e-J Surf Sci Nanotech 7:831–835

    Article  CAS  Google Scholar 

  39. Hoffbauer MA, McVeigh VJ (1990) Ultrafast optical probes of interface dynamics and structure. Proc SPIE Laser Photoionization Desorption Surf Anal Tech 1208:117

    Article  CAS  Google Scholar 

  40. Dhara S, Lu C-Y, Magudapathy P, Huang Y-F, Tu W-S, Chen K-H (2014) Surface plasmon polariton assisted optical switching in noble bimetallic nanoparticle system. Appl Phys Lett 106:023101

    Article  Google Scholar 

  41. Yang KY, Choi KC, Kang I-S, Ahn CW (2010) Surface plasmon resonance enhanced photoconductivity in Cu nanoparticle films. Opt Express 18:16379–16386

    Article  CAS  PubMed  Google Scholar 

  42. Kiesow A, Morris JE, Radehaus C, Heilmann A (2003) Switching behavior of plasma polymer films containing silver nanoparticles. J Appl Phys 94:6988–6990

    Article  CAS  Google Scholar 

  43. Berthold K, Höpfel RA, Gornik E (1985) Surface plasmon polariton enhanced photoconductivity of tunnel junctions in the visible. Appl Phys Lett 46:626–628

    Article  CAS  Google Scholar 

  44. Cohen RW, Cody GD, Coutts MD, Abeles B (1973) Optical properties of granular silver and gold films. Phys Rev B 8:3689–3701

    Article  CAS  Google Scholar 

  45. Bruggeman DAG (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen substanzen. Ann Phys (Leipzig) 24:636–679

    Article  CAS  Google Scholar 

  46. Sheng P (1980) Theory for the dielectric function of granular composite media. Phys Rev Lett 45:60–63

    Article  CAS  Google Scholar 

  47. Sheng P, Abeles B, Arie Y (1973) Hopping conductivity in granular metals. Phys Rev Lett 31:44–47

    Article  CAS  Google Scholar 

  48. Simanek E (1980) The temperature dependence of the electrical resistivity of granular metals. Solid State Commun 40:1021–1023

    Article  Google Scholar 

  49. Efros AL, Shklovskii BI (1975) Coulomb gap and low-temperature conductivity of disordered systems. J Phys C 8:L49–L51

    Article  CAS  Google Scholar 

  50. Sheng P, Klafter J (1983) Hopping conductivity in granular disordered systems. Phys Rev B 27:2583–2586

    Article  Google Scholar 

  51. Magudapathy P, Gangopadhyay P, Panigrahi BK, Nair KGM, Dhara S (2001) Electrical transport studies of Ag nano-clusters embedded in glass matrix. Phys B 299:142–146

    Article  CAS  Google Scholar 

  52. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  53. Zhou P, You GJ, Li YG, Han T, Li J, Wang SY, Chen LY, Liu Y, Qian SX (2003) Linear and ultrafast nonlinear optical response of Ag:Bi2O3 composite films. Appl Phys Lett 83:3876–3878

    Article  CAS  Google Scholar 

  54. del Coso R, Requejo-Isidro J, Solis J, Gonzalo J, Afonso CN (2005) Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold. J Appl Phys 95:2755–2762

    Article  Google Scholar 

  55. Glass AM, Liao PF, Olson DH, Humphrey LM (1892) Optical metal-oxide tunnel detectors with microstructured electrodes. Opt Lett 7:575–577

    Article  Google Scholar 

  56. Sobhani A, Knight MW, Wang Y, Zheng B, King NS, Brown LV, Fang Z, Nordlander P, Halas NJ (2013) Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat Commun 4:1–6

    Article  Google Scholar 

  57. Dhara S, Kesavamoorthy R, Magudapathy P, Premila M, Panigrahi BK, Nair KGM, Wu CT, Chen KH (2003) Quasiquenching size effects in gold nanoclusters embedded in silica matrix. Chem Phys Lett 370:254–260

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Dhara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dhara, S. (2016). Surface Plasmon Polariton Assisted Optical Switching in Noble Metal Nanoparticle Systems: A Sub-Band Gap Approach. In: Geddes, C. (eds) Reviews in Plasmonics 2015. Reviews in Plasmonics, vol 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-24606-2_1

Download citation

Publish with us

Policies and ethics