Skip to main content

Stratigraphy: The Modern Synthesis

  • Chapter
  • First Online:
Stratigraphy: A Modern Synthesis

Abstract

Stratigraphy is defined as the study of layered rocks. In the context of sedimentary geology in general, and of this book in particular, Stratigraphy is the discipline that pulls everything together. In Chaps. 2–5 of this book we deal with increasingly large and complex sedimentological concepts, and in Chap. 6 we discuss mapping methods, which are essentially methods for extending our interpretations beyond our immediate data points by interpolation and extrapolation. Here in this chapter we add the elements of chronostratigraphic dating and correlation, and demonstrate the interdisciplinary nature of modern stratigraphic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu, V., 1998. Evolution of the conjugate volcanic passive margins: Pelotas Basin (Brazil) and offshore Namibia (Africa): Implication for global sea-level changes. Unpublished Ph.D. thesis, Rice University, Houston.

    Google Scholar 

  • Ager, D. V., 1964, The British Mesozoic Committee: Nature, v. 203, p. 1059.

    Google Scholar 

  • Ager, D. V., 1973, The nature of the stratigraphical record: New York, John Wiley, 114 p.

    Google Scholar 

  • Ager, D. V., 1981, The nature of the stratigraphical record (second edition): John Wiley, New York, 122 p.

    Google Scholar 

  • Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V. 1980, Extraterrestrial cause for the Cretaceous-Tertiary extinction: Science, v. 208, p. 1095-1108.

    Google Scholar 

  • Armentrout, J. M., 1981, Correlation and ages of Cenozoic chronostratigraphic units in Oregon and Washington: Geological Society of America Special Paper 184, p. 137-148.

    Google Scholar 

  • Aubry, M.-P., 2007, chronostratigraphic terminology: Building on Principles: Stratigraphy, v. 4, p. 117-125.

    Google Scholar 

  • Aubry, M.-P., Van Couvering, J., Berggren, W. A., and Steininger, F., 1999, Problems in chronostratigraphy: stages, series, unit and boundary stratotype section and point and tarnished golden spikes: Earth-Science Reviews, v. 46, p. 99-148.

    Google Scholar 

  • Aubry, M.-P., Van Couvering, J., Berggren, W. A., and Steininger, F., 2000, Should the gold spike glitter: Episodes, v. 23, p. 203-210.

    Google Scholar 

  • Autin, W. J., 1992, Use of alloformations for definition of Holocene meander belts in the middle Amite River, southeastern Louisiana: Geological Society of America Bulletin, v. 104, p. 233-241.

    Google Scholar 

  • Barndt, J., Johnson, N. M., Johnson, G. D., Opdyke, N. D., Lindsay, E. H., Pilbeam, D., And Tahirkheli, R. A. H., 1978, The magnetic polarity stratigraphy and age of the Siwalik Group near Dhok Pathan Village, Potwar Plateau, Pakistan: Earth Planetary Science Letters, v. 41, p. 355-364.

    Google Scholar 

  • Barnes, C. R., Jackson, D. E., and Norford, B. S., 1976, Correlation between Canadian Ordovician zonations based on graptolites, conodonts and benthic macrofossils from key successions, in Bassett, M. G., ed., The Ordovician System: proceedings of a Palaeontological Association symposium, Birmingham, September 1974: University of Wales and National Museum of Wales, Cardiff, p. 209-225.

    Google Scholar 

  • Barrell, Joseph, 1917, Rhythms and the measurement of geologic time: Geological Society of America Bulletin, v. 28, p. 745-904.

    Google Scholar 

  • Bassett, M. G., 1985, Towards a “common language” in stratigraphy: Episodes, v. 8, p. 87-92.

    Google Scholar 

  • Behrensmeyer, A. K., 1987, Miocene fluvial facies and vertebrate taphonomy in northern Pakistan;. in Ethridge, F. G., Flores, R. M., and Harvey, M. D., eds., Recent developments in fluvial sedimentology: Society of Economic Paleontologists and Mineralogists Special Publication 39, p. 169-176.

    Google Scholar 

  • Berggren, W. A., 2007, Status of the hierarchical subdivision of higher order marine Cenozoic chronostratigraphic units: Stratigraphy, v. 4, p. 99-108.

    Google Scholar 

  • Berggren, W. A., Kent, D. V., Aubry, M.-P., and Hardenbol, J., eds., 1995, Geochronology, time scales and global stratigraphic correlation: Society for Sedimentary Geology Special Publication 54, 386 p.

    Google Scholar 

  • Berry, W. B. N., 1968, Growth of prehistoric time scale, based on organic evolution: W.H. Freeman and Co., San Francisco, 158 p.

    Google Scholar 

  • Berry, W. B. N., 1977, Graptolite biostratigraphy: a wedding of classical principles and current concepts; in Kauffman, E. G., and Hazel, J. E., eds., Concepts and methods of biostratigraphy: Dowden, Hutchinson and Ross Inc., Stroudsburg, Pennsylvania, p. 321-338.

    Google Scholar 

  • Bhattacharya, J., 1991, Regional to sub-regional facies architecture of river-dominated deltas, Upper Cretaceous Dunvegan Formation, Alberta subsurface, in Miall, A. D., and Tyler, N., eds., The three-dimensional facies architecture of terrigenous clastic sediments and its implications for hydrocarbon discovery and recovery, Society of Economic Paleontologists and Mineralogists, Concepts in Sedimentology and Paleontology, v. 3, p. 189-206.

    Google Scholar 

  • Bhattacharya, J. P., 1993, The expression and interpretation of marine flooding surfaces and erosional surfaces in core; examples from the Upper Cretaceous Dunvegan Formation, Alberta foreland basin, Canada, in Posamentier, H. W., Summerhayes, C. P., Haq, B. U., and Allen, G. P., eds., Sequence stratigraphy and facies associations: International Association of Sedimentologists Special Publication 18, p. 125-160.

    Google Scholar 

  • Blackwelder, E., 1909, The valuation of unconformities: Journal of Geology, v. 17, p. 289-299.

    Google Scholar 

  • Boyd, R., and Penland, S., 1988, A geomorphic model for Mississippi delta evolution: Gulf Coast Association of Geological Societies, Transactions, v. 38, p. 443-452.

    Google Scholar 

  • Brown, A. R., 2011, Interpretation of three-dimensional seismic data, seventh edition, American Association of Petroleum Geologists Memoir 42, 646 p.

    Google Scholar 

  • Burke, W. H., Denson, R. E., Hetherington, E. A., Koepnick, R. B., Nelson, H. F., and Otto, J. B., 1982, Variations of seawater 87Sr/86Sr through Phanerozoic time: Geology, v. 10, p. 516-519.

    Google Scholar 

  • Callomon, J. H., 1995, Time from fossils: S. S. Buckman and Jurassic high-resolution geochronology, in Le Bas, M. J., ed., Milestones in Geology: Geological Society of London Memoir 16, p. 127-150.

    Google Scholar 

  • Callomon, J. H., 2001, Fossils as geological clocks, in C. L. E. Lewis and S. J. Knell, eds., The age of the Earth: from 4004 BC to AD 2002: Geological Society of London Special Publication 190, p. 237-252.

    Google Scholar 

  • Cartwright, J. A., Haddock, R. C., and Pinheiro, L. M., 1993, The lateral extent of sequence boundaries, in Williams, G. D., and Dobb, A., eds., Tectonics and seismic sequence stratigraphy: Geological Society, London, Special Publication 71, p. 15-34.

    Google Scholar 

  • Castradori, D., 2002, A complete standard chronostratigraphic scale: how to turn a dream into reality? Episodes, v. 25, p. 107-110.

    Google Scholar 

  • Catuneanu, O., 2006, Principles of sequence stratigraphy: Elsevier, Amsterdam, 375 p.

    Google Scholar 

  • Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., Fielding, C. R., Fisher, W. L., Galloway, W. E., Gibling, M. R., Giles, K. A., Holbrook, J. M., Jordan, R., Kendall, C. G. St. C., Macurda, B., Martinsen, O. J., Miall, A. D., Neal, J. E., Nummedal, D., Pomar, L., Posamentier, H. W., Pratt, B. R,. Sarg, J. F., Shanley, K. W., Steel, R. J., Strasser, A., Tucker, M. E., and Winker, C., 2009, Toward the Standardization of Sequence Stratigraphy: Earth Science Reviews, v. 92, p. 1-33.

    Google Scholar 

  • Catuneanu, O., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., Fielding, C. R., Fisher, W. L., Galloway, W. E., Gianolla, P., Gibling, M. R., Giles, K. A., Holbrook, J. M., Jordan, R., Kendall, C. G. St. C., Macurda, B., Martinsen, O. J., Miall, A. D., Nummedal, D., Posamentier, H. W., Pratt, B. R,. Shanley, K. W., Steel, R. J., Strasser, A., and Tucker, M. E., 2010, Sequence stratigraphy: common ground after three decades of development: First Break, v. 28, p. 21-34.

    Google Scholar 

  • Catuneanu, O., Galloway, W.E., Kendall, C.G.St.C., Miall, A.D., Posamentier, H.W., Strasser A., and Tucker M.E., 2011, Sequence Stratigraphy: Methodology and Nomenclature: Report to ISSC: Newsletters on Stratigraphy, v. 4 (3), p. 173-245.

    Google Scholar 

  • Chlupác, I., 1972, The Silurian-Devonian boundary in the Barrandian: Bulletin of Canadian Petroleum Geology, v. 20, p. 104-174.

    Google Scholar 

  • Christie-Blick, N., Mountain, G. S., and Miller, K. G., 1990, Seismic stratigraphy: record of sea-level change, in Revelle, R., ed., Sea-level change: National Research Council, Studies in Geophysics, Washington, National Academy Press, p. 116-140.

    Google Scholar 

  • Cody, R. M., Levy, R. H., Harwood, D. M., and Sadler, P. M., 2008, Thinking outside the zone: high-resolution quantitative biochronology for the Antarctic Neogene: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 260, p. 92 - 121.

    Google Scholar 

  • Cohee, G. V., Glaessner, M. F., and Hedberg, H. D., eds., 1978, Contributions to the geologic time scale: American Association of Petroleum Geologists Studies in Geology No. 6.

    Google Scholar 

  • Cohen, K.M., Finney, S., and Gibbard, P.L., 2012, International Chronostratigraphic Chart: International Commission on Stratigraphy, www.stratigraphy.org.

  • Conkin, B. M., and Conkin, J. E., eds., 1984, Stratigraphy: foundations and concepts: Benchmark Papers in Geology, New York: Van Nostrand Reinhold, 363 p.

    Google Scholar 

  • Cooper, R. A., Nowlan, G. S., and Williams, S. H., 2001, Global Stratotype Section and Point for base of the Ordovician System: Episodes, v. 24, p. 19-28.

    Google Scholar 

  • Cowie, J. W., 1986, Guidelines for boundary stratotypes: Episodes, v. 9, p. 78-82.

    Google Scholar 

  • Cox, A., 1969, Geomagnetic reversals: Science, v. 163, p. 237-245.

    Google Scholar 

  • Cox, B. M., 1990, A review of Jurassic chronostratigraphy and age indicators for the UK, in Hardman, R. F. P., and Brooks, J., eds., Tectonic events responsible for Britain’s oil and gas reserves: Geological Society, London, Special Publication 55, p. 169-190.

    Google Scholar 

  • Cramer, B. D., Vandenbroucke, T. R. A., and Ludvigson, G. A., 2015, High-resolution event stratigraphy (HiRES) and the quantification of stratigraphic uncertainty: Silurian examples of the quest for precision in stratigraphy: Earth Science reviews, v. 141, p. 136-153.

    Google Scholar 

  • Croll, J., 1864, On the physical cause of the change of climate during geological epochs: Philosophical Magazine, v. 28, p. 435-436.

    Google Scholar 

  • de Boer, P. L., and Smith, D. G., 1994, Orbital forcing and cyclic sequences, in de Boer, P. L., and Smith, D. G., eds., Orbital forcing and cyclic sequences: International Association of Sedimentologists Special Publication 19, p. 1-14.

    Google Scholar 

  • Doyle, J. A., 1977: Spores and pollen: the Potomac Group (Cretaceous) Angiosperm sequence; in Kauffman, E. G., and Hazel, J. E., eds., Concepts and methods of biostratigraphy: Dowden, Hutchinson and Ross Inc., Stroudsburg, Pennsylvania, p. 339-364.

    Google Scholar 

  • Edwards, L. E., 1984, Insights on why graphic correlation (Shaw’s method) works: Journal of Geology, v. 92, p. 583-597.

    Google Scholar 

  • Edwards, L. E., 1985, Insights on why graphic correlation (Shaw’s method) works: A reply [to discussion]: Journal of Geology, v. 93, p. 507-509.

    Google Scholar 

  • Einsele, G., and Seilacher, A., eds., 1982, Cyclic and event stratification: Springer-Verlag Inc., Berlin, 536 p.

    Google Scholar 

  • Eldredge, N., and Gould, S. J., 1972, Punctuated equilibrium: an alternative to phyletic gradualism, in Schopf, T. J. M., ed., Models in paleobiology: San Francisco, Freeman, Cooper and Company, p. 82-115.

    Google Scholar 

  • Eldredge, N., and Gould, S. J., 1977, Evolutionary models and biostratigraphic strategies, in Kauffman, E. G., and Hazel, J. E., eds., Concepts and methods of biostratigraphy: Dowden, Hutchinson and Ross Inc., Stroudsburg, Pennsylvania, p. 25-40.

    Google Scholar 

  • Embry, A. F., 1995, Sequence boundaries and sequence hierarchies: problems and proposals, in Steel, R. J., Felt, V. L., Johannessen, E. P., and Mathieu, C., eds., Sequence stratigraphy on the Northwest European margin: Norsk Petroleumsforening Special Publication 5, Elsevier, Amsterdam, p. 1-11

    Google Scholar 

  • Embry, A. F., and Johannessen, E. P., 1992, T-R sequence stratigraphy, facies analysis and reservoir distribution in the uppermost Triassic-Lower Jurassic succession, western Sverdrup Basin, Arctic Canada, in Vorren, T. O., Bergsager, E., Dahl-Stamnes, O. A., Holter, E., Johansen, B., Lie, E., and Lund, T. B., eds., Arctic geology and petroleum potential: Norwegian Petroleum Society Special Publication 2, p. 121-146.

    Google Scholar 

  • Emery, D., and Myers, K. J., 1996, Sequence stratigraphy: Blackwell, Oxford, 297 p.

    Google Scholar 

  • Emiliani, C., 1955, Pleistocene temperatures: Journal of Geology, v. 63, p. 538-578.

    Google Scholar 

  • Fejfar, O., and Heinrich, W. D., 1989, Muroid rodent biochronology of the Neogene and Quaternary, in Lindsay, E. H., Fahlbusch, V., and Mein, P., eds., European mammal chronology: NATO Advanced Research Workshop, p. 91-118.

    Google Scholar 

  • Frazier, D. E., 1974, Depositional episodes: their relationship to the Quaternary stratigraphic framework in the northwestern portion of the Gulf Basin: Bureau of Economic Geology, University of Texas, Geological Circular 74-1, 26 p.

    Google Scholar 

  • House. M. R., and Gale, A. S., eds., 1995, Orbital forcing timescales and cyclostratigraphy: Geological Society, London, Special Publication 85, 210 p.

    Google Scholar 

  • Galloway, W. E., 1989, Genetic stratigraphic sequences in basin analysis I: Architecture and genesis of flooding-surface bounded depositional units: American Association of Petroleum Geologists Bulletin, v. 73, p. 125-142.

    Google Scholar 

  • Gibling, M. R., and Bird, D. J., 1994, Late Carboniferous cyclothems and alluvial paleovalleys in the Sydney Basin, Nova Scotia: Geological Society of America Bulletin, v. 106, p. 105-117.

    Google Scholar 

  • Gilbert, G. K., 1895, Sedimentary measurement of geologic time: Journal of Geology, v. 3, p. 121-127.

    Google Scholar 

  • Gradstein, F. M., Ogg, J. G., and Smith, A. G., eds., 2004a, A geologic time scale: Cambridge University Press, Cambridge, 610 p.

    Google Scholar 

  • Gradstein, F. M., Cooper, R. A., and Sadler, P. M., 2004b, Biostratigraphy: time scales from graphic and quantitative methods, in Gradstein, F. M., Ogg, J. G., and Smith, A. G., eds., A geologic time scale: Cambridge University Press, Cambridge, p. 49-54.

    Google Scholar 

  • Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., 2012, The Geologic time scale 2012: Elsevier, Amsterdam, 2 vols., 1176 p.

    Google Scholar 

  • Hancock, J. M., 1977, The historic development of biostratigraphic correlation, in Kauffman, E. G. and Hazel, J. E., eds., Concepts and methods of biostratigraphy: Dowden, Hutchinson and Ross Inc., Stroudsburg, Pennsylvania, p. 3-22.

    Google Scholar 

  • Haq, B. U., Hardenbol, J., and Vail, P. R., 1988, Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change, in Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C., eds., Sea-level Changes: an integrated approach: Society of Economic Paleontologists and Mineralogists Special Publication 42, p. 71-108.

    Google Scholar 

  • Harland, W. B., 1978, Geochronologic scales, in Cohee, G. V., Glaessner, M. F. and Hedberg, H. D., eds., Contributions to the Geologic time scale: American Association of Petroleum Geologists Studies in Geology 6, p. 9-32.

    Google Scholar 

  • Harland, W. B., 1993, Stratigraphic regulation and guidance: a critique of current tendencies in stratigraphic codes and guides: Discussion: Geological Society of America Bulletin, v. 105, p. 1135-1136.

    Google Scholar 

  • Harland, W. B., and Francis, H., eds., 1964, The Phanerozoic time scale (A symposium dedicated to Professor Arthur Holmes): Quarterly Journal of the Geological Society of London, v. 120s, 458 p.

    Google Scholar 

  • Harland, W. B., and Francis, H., eds., 1971, The Phanerozoic time scale — A Supplement. Geological Society of London Special Publication 5, 356 p.

    Google Scholar 

  • Harland, W. B., Smith, A. G., and Wilcock, B., eds., 1964, The Phanerozoic time scale (A symposium dedicated to Professor Arthur Holmes): Geological Society of London, Supplement to Quarterly Journal, v. 120 s, 458 p.

    Google Scholar 

  • Harland, W. B., Cox, A. V., Llewellyn, P. G., Pickton, C. A. G., Smith, A. G., and Walters, R., 1982, A geologic time scale: Cambridge Earth Science Series, Cambridge University Press, Cambridge, 131 p.

    Google Scholar 

  • Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G., 1990, A geologic time scale, 1989: Cambridge Earth Science Series, Cambridge University Press, Cambridge, 263 p.

    Google Scholar 

  • Harper, C. W., Jr., and Crowley, K. D., 1985, Insights on why graphic correlation (Shaw’s method) works: A discussion: Journal of Geology, v. 93, p. 503-506.

    Google Scholar 

  • Harrison, W. J., 1882, Geology of the counties of England and Wales, London, Kelly and Company, 346 p.

    Google Scholar 

  • Harrison, C. G. A., and Funnell, B. M., 1964, Relationship of palaeomagnetic reversals and micropalaeontology in two Late Cenozoic cores from the Pacific Ocean: Nature, v. 204, p. 566.

    Google Scholar 

  • Hay, W. W., and Southam, J. R., 1978, Quantifying biostratigraphic correlation: Annual Review of Earth and Planetary Sciences, v. 6, p. 353-375.

    Google Scholar 

  • Hays, J. D., Imbrie, J., and Shackleton, N. J., 1976, Variations in the earth’s orbit: pacemaker of the ice ages: Science, v. 194, p. 1121-1132.

    Google Scholar 

  • Heckert, A. B., and Lucas, S. G., 2004, Simplifying the stratigraphy of time: Comments and Reply: Geology, v. 32, p. e58.

    Google Scholar 

  • Hedberg, H. D., ed., 1976, International Stratigraphic Guide: Wiley, New York, 200 p.

    Google Scholar 

  • Herbert, T. D., Premoli Silva, P, Erba, E., and Fischer, A. G., 1995. Orbital chronology of Cretaceous-Paleocene marine sediments, in Berggren, W. A., Kent, D. V., Aubry, M.-P., and Hardenbol, J., eds., Geochronology, time scales and global stratigraphic correlation: Society for Sedimentary Geology Special Publication 54, p. 81-93.

    Google Scholar 

  • Hilgen, F. J., 1991. Extension of the astronomically calibrated (polarity) time scale to the Miocene/Pliocene boundary: Earth and Planetary Sciences Letters, v. 107, p. 349-368.

    Google Scholar 

  • Hilgen, F. J., Brinkhuis, H., and Zachariasse, W. J., 2006, Unit stratotypes for global stages. The Neogene perspective: Earth Science Reviews v. 74, p. 113-125.

    Google Scholar 

  • Hilgen, F. J., Hinnov, L. A., Aziz, H. A., Abels, H. A., Batenburg, S., Bosmans, J. H. C., de Boer, B., Hüsings, S. K., Kuiper, K. F., and Lourens, L. J., 2015, Stratigraphic continuity and fragmentary sedimentation: the success of cyclostratigraphy as part of integrated stratigraphy in Smith, D. G., Bailey, R., J., Burgess, P., and Fraser, A., eds., Strata and time: Geological Society, London, Special Publication 404, p. 157-197.

    Google Scholar 

  • Hinnov, L. A., and Ogg, J. G., 2007, Cyclostratigraphy and the astronomical time scale: Stratigraphy, v. 4, p. 239-251.

    Google Scholar 

  • Holland, C. H., 1986, Does the golden spike still glitter? Journal of the Geological Society, London, v. 143, p. 3-21.

    Google Scholar 

  • Holmes, A., 1960, A revised geological time-scale: Transactions of the Edinburgh Geological Society, v. 17, p. 183-216.

    Google Scholar 

  • Holmes, A., 1965: Principles of Physical Geology, second edition, Nelson, London, 1288 p.

    Google Scholar 

  • House, M. R., 1985, A new approach to an absolute timescale from measurements of orbital cycles and sedimentary microrhythms: Nature, v. 315, p. 721-725.

    Google Scholar 

  • Hunt, D., and Tucker, M. E., 1992, Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall: Sedimentary Geology, v. 81, p. 1-9.

    Google Scholar 

  • Imbrie, J., 1985, A theoretical framework for the Pleistocene ice age: Journal of the Geological Society, London, v. 142, p. 417-432.

    Google Scholar 

  • Imbrie, J., and Imbrie, K. P., 1979, Ice ages: solving the mystery: Enslow, Hillside, New Jersey, 224 p.

    Google Scholar 

  • Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L., Shackleton, N. J., 1984. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record, in: Berger, A. L., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B., eds., Milankovitch and Climate. D. Reidel, Norwell, Mass, p. 269-305.

    Google Scholar 

  • International Subcommission on Stratigraphic Classification, 1987, Unconformity-bounded stratigraphic units: Geological Society of America Bulletin, v. 98, p. 232-237.

    Google Scholar 

  • Irving, E., 1966: Paleomagnetism of some Carboniferous rocks from New South Wales and its relation to geological events: Journal of Geophysical Research, v. 71, p. 6025-6051.

    Google Scholar 

  • Jenkins, D. G., and Gamson, P., 1993, The late Cenozoic Globorotalia truncatulinoides datum plane in the Atlantic, Pacific and Indian Oceans, in Hailwood, E. A., and Kidd, R. B., eds., High resolution stratigraphy: Geological Society, London, Special Publication 70, p. 127-130.

    Google Scholar 

  • Johnson, G. D., Johnson, N. M., Opdyke, N. D., and Tahirkheli, R. A. K., 1979, Magnetic reversal stratigraphy and sedimentary tectonic history of the Upper Siwalik Group, eastern Salt Range and southwestern Kashmir, in Farah, A., and DeJong, K. A., eds., Geodynamics of Pakistan: Geological Survey of Pakistan, Quetta, Pakistan, p. 149-165.

    Google Scholar 

  • Johnson, N. M., Stix, J., Tauxe, L., Cerveny, P. F., and Tahirkheli, R. A. K., 1985, Paleomagnetic chronology, fluvial processes, and tectonic implications of the Siwalik deposits near Chinji Village, Pakistan: Journal of Geology, v. 93, p. 27-40.

    Google Scholar 

  • Kauffman, E. G., 1984, Paleobiogeography and evolutionary response dynamic in the Cretaceous Western Interior Seaway of North America, in Westerman, G. E., ed., Jurassic-Cretaceous biochronology and paleogeography of North America: Geological Association of Canada Special Paper 27, p. 273-306.

    Google Scholar 

  • Kauffman, E. G., 1988, Concepts and methods of high-resolution event stratigraphy: Annual Reviews of Earth and Planetary Sciences, v. 16, p. 605-654.

    Google Scholar 

  • Kauffmann, E. G., 1977, Evolutionary rates and biostratigraphy; in Kauffman, E. G., and Hazel, J. E., eds., Concepts and methods of biostratigraphy: Dowden, Hutchinson and Ross Inc., Stroudsburg, Pennsylvania, p. 109-142.

    Google Scholar 

  • Keller, H. M., Tahirkheli, R. A. K., Mirza, M. A., Johnson, G. D., and Johnson, N. M., 1977, Magnetic polarity stratigraphy of the Upper Siwalik deposits, Pabbi Hills, Pakistan: Earth and Planetary Science Letters, v. 36, p. 187-201.

    Google Scholar 

  • Kelley, P. H., Fastovsky, D. E., Wilson, M. A., Laws, R. A., and Raymond, A., 2013, From paleontology to paleobiology: A half-century of progress in understanding life history, in Bickford, M. E., ed., The web of geological sciences: Advances, impacts and interactions: Geological Society of America Special Paper 500, p. 191-232.

    Google Scholar 

  • Kemple, W. G., Sadler, P. M., and Strauss, D. J., 1995, Extending graphic correlation to many dimensions: stratigraphic correlation as constrained optimization, in Mann, K. O., and Lane, H. R., eds., Graphic correlation: Society for Sedimentary Geology, Special Publication 53, p. 65-82.

    Google Scholar 

  • Kennedy, W. J., and Cobban, W. A., 1977, The role of ammonites in biostratigraphy; in Kauffman, E. G. and Hazel, J. E., eds., Concepts and methods of biostratigraphy: Dowden, Hutchinson and Ross Inc., Stroudsburg, Pennsylvania, p. 309-320.

    Google Scholar 

  • Kennedy, W. J., Walaszczyk, I., and Cobban, W. A., 2005, The Global Boundary Stratotype Section and Point for the base of the Turonian Stage of the Cretaceous, Pueblo, Colorado, U.S.A.: Episodes, v. 28, p. 93-104.

    Google Scholar 

  • Kennett, J. P., ed., 1980, Magnetic stratigraphy of sediments: Dowden, Hutchinson and Ross Inc., Stroudsburg, Pennsylvania, Benchmark Papers in Geology 54, 438 p.

    Google Scholar 

  • Knoll, A., Walter, M. R., Narbonne, G. M., and Christie-Blick, N., 2006, The Ediacaran Period: a new addition to the geologic time scale: Lethaia, v. 39, p. 13-30.

    Google Scholar 

  • Kolla, V., Posamentier, H. W., and Eichenseer, H., 1995, Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall—discussion: Sedimentary Geology, v. 95, p. 139-145.

    Google Scholar 

  • Landing, E., Geyer, G., Brasier, M. D., and Bowring, 2013, S. A., Cambrian evolutionary radiation: context, correlation and chronostratigraphy—Overcoming deficiencies of the first appearance datum (FAD) concept: Earth Science Reviews, v. 123, p. 133-172.

    Google Scholar 

  • Langereis, C. G., Krijgsman, W., Muttoni, G., and Menning, M., 2010, Magnetostratigraphy—concepts, definitions, and applications: Newsletters on Stratigraphy, v. 43, p. 207-233.

    Google Scholar 

  • Loutit, T. S., Hardenbol, J., Vail, P. R., and Baum, G. R., 1988, Condensed sections: the key to age dating and correlation of continental margin sequences, in Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C., eds., Sea-level Changes: an integrated approach: Society of Economic Paleontologists and Mineralogists Special Publication 42, p. 183-213.

    Google Scholar 

  • MacLeod, N., and Keller, G., 1991, How complete are Cretaceous/Tertiary boundary sections? A chronostratigraphic estimate based on graphic correlation: Geological Society of America Bulletin, v. 103, p. 1439-1457.

    Google Scholar 

  • Mann, K. O., and Lane, H. R., eds., 1995, Graphic correlation: Society for Sedimentary Geology, Special Publication 53, 263 p.

    Google Scholar 

  • Martinsen, O. J., 1993, Namurian (Late Carboniferous) depositional systems of the Craven-Askrigg area, northern England: implications for sequence-stratigraphic models, in Posamentier, H. W., Summerhayes, C. P., Haq, B. U., and Allen, G. P., eds., Sequence stratigraphy and facies associations: International Association of Sedimentologists Special Publication 18, p. 247-281.

    Google Scholar 

  • Martinsen, O. J., 1993, Namurian (Late Carboniferous) depositional systems of the Craven-Askrigg area, northern England: implications for sequence-stratigraphic models, in Posamentier, H. W., Summerhayes, C. P., Haq, B. U., and Allen, G. P., eds., Sequence stratigraphy and facies associations: International Association of Sedimentologists Special Publication 18, p. 247-281.

    Google Scholar 

  • Martinsen, O. J., Martinsen, R. S., and Steidtmann, J. R., 1993, Mesaverde Group (Upper Cretaceous), southeastern Wyoming: allostratigraphy versus sequence stratigraphy in a tectonically active area: American Association of Petroleum Geologists Bulletin, v. 77, p. 1351-1373.

    Google Scholar 

  • Matthews, R. K., 1984a, Oxygen-isotope record of ice-volume history: 100 million years of glacio-isostatic sea-level fluctuation, in Schlee, J. S., ed., Interregional unconformities and hydrocarbon accumulation: American Association of Petroleum Geologists Memoir 36, p. 97-107.

    Google Scholar 

  • Matthews, R. K., 1988, Sea level history: Science, v. 241, p. 597-599.

    Google Scholar 

  • Mattinson, J. M., 2013, The geochronology revolution, in Bickford, M. E., The web of geological sciences: advances, impacts and interactions: Geological Society of America Special paper 500, p. 303-320.

    Google Scholar 

  • McArthur, J. M., 1994, Recent trends in strontium isotope stratigraphy, Terra Nova, v. 6, p. 331-358.

    Google Scholar 

  • McArthur, J. M., 1998, Strontium isotope stratigraphy, in Doyle, P. and Bennett, M. R., eds., Unlocking the stratigraphical record: John Wiley and Sons, Chichester, p. 221-241.

    Google Scholar 

  • McArthur, J. M., and Howarth, R. J., 2004, Strontium isotope stratigraphy, in Gradstein, F. M., Ogg, J. G., and Smith, A. G., eds., A geologic time scale: Cambridge University Press, Cambridge, p. 96-105.

    Google Scholar 

  • McGowran, B., 2005, Biostratigraphy: Microfossils and Geological Time: Cambridge University Press, Cambridge, 459 p.

    Google Scholar 

  • McKerrow, W. S., 1971, Palaeontological prospects—the use of fossils in stratigraphy: Journal of the Geological Society, London, v. 127, p. 455-464.

    Google Scholar 

  • McLaren, D. J., 1970, Presidential address: time, life and boundaries: Journal of Paleontology, v. 44, p. 801-813.

    Google Scholar 

  • Miall, A. D., 1994, Sequence stratigraphy and chronostratigraphy: problems of definition and precision in correlation, and their implications for global eustasy: Geoscience Canada, v. 21, p. 1-26.

    Google Scholar 

  • Miall, A. D., 1995, Whither stratigraphy? Sedimentary Geology, v. 100, p. 5-20.

    Google Scholar 

  • Miall, A. D., 2004, Empiricism and model building in stratigraphy: the historical roots of present-day practices. Stratigraphy: American Museum of Natural History, v. 1, p. 3-25.

    Google Scholar 

  • Miall, A. D., 2010, The geology of stratigraphic sequences, second edition: Springer-Verlag, Berlin, 522 p.

    Google Scholar 

  • Miall, A. D., 2013, Sophisticated stratigraphy, in Bickford, M. E., ed., The web of geological sciences: Advances, impacts and interactions: Geological Society of America Special Paper 500, p. 169-190.

    Google Scholar 

  • Miall, A. D., and Miall, C. E., 2001, Sequence stratigraphy as a scientific enterprise: the evolution and persistence of conflicting paradigms: Earth Science Reviews, v. 54, #4, p. 321-348.

    Google Scholar 

  • Milankovitch, M., 1930, Mathematische klimalehre und astronomische theorie der klimaschwankungen, in Koppen, W., and Geiger, R., eds., Handbuch der klimatologie, I (A); Gebruder Borntraeger, Berlin.

    Google Scholar 

  • Milankovitch, M., 1941, Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem: Akad. Royale Serbe, 133, 633 p.

    Google Scholar 

  • Miller, F. X., 1977, The graphic correlation method in biostratigraphy, in Kauffman, E. G., and Hazel, J. E., eds., Concepts and methods in biostratigraphy: Dowden, Hutchinson and Ross, Inc., Stroudsburg, Pennsylvania, p. 165-186.

    Google Scholar 

  • Mitchum, R. M., Jr., and Van Wagoner, J. C., 1991, High-frequency sequences and their stacking patterns: sequence-stratigraphic evidence of high-frequency eustatic cycles: Sedimentary Geology, v. 70, 131-160.

    Google Scholar 

  • Mitchum, R. M., Jr., Vail, P. R., and Sangree, J. B., 1977, Seismic stratigraphy and global changes of sea level, Part six: Stratigraphic interpretation of seismic reflection patterns in depositional sequences, in Payton, C. E., ed., Seismic stratigraphy—applications to hydrocarbon exploration; American Association of Petroleum Geologists Memoir 26, p. 117-133.

    Google Scholar 

  • Naish, T. R, Field, B. D., Zhu, H., Melhuish, A., Carter, R. M., Abbott, S. T., Edwards, S., Alloway, B. V., Wilson, G. S., Niessen, F., Barker, A., Browne, G. H., and Maslen, G., 2005, integrated outcrop, drill core, borehole and seismic stratigraphic architecture of a cyclothemic, shallow-marine depositional system, Wanganui Basin, New Zealand: Journal of the Royal Society of New Zealand, v. 35, p, 91-122.

    Google Scholar 

  • North American Commission on Stratigraphic Nomenclature, 1983, North American Stratigraphic Code: American Association of Petroleum Geologists Bulletin, v. 67, p. 841-875.

    Google Scholar 

  • North American Commission on Stratigraphic Nomenclature (NACSN), 2005, North American Stratigraphic Code: American Association of Petroleum Geologists Bulletin, v. 89, p. 1547-1591.

    Google Scholar 

  • Nummedal, D., and Swift, D. J. P., 1987, Transgressive stratigraphy at sequence-bounding unconformities: some principles derived from Holocene and Cretaceous examples, in Nummedal, D., Pilkey, O. H., and Howard, J. D., eds., Sea-level fluctuation and coastal evolution; Society of Economic Paleontologists and Mineralogists Special Publication 41, p. 241-260.

    Google Scholar 

  • Odin, G. S., 1982, Numerical dating in Stratigraphy, v. 1 and 2, Chichester: Wiley-Interscience.

    Google Scholar 

  • Ogg, J. G., and Smith, A. G., 2004, The geomagnetic polarity time scale,, in Gradstein, F. M., Ogg, J. G., and Smith, A. G., eds., A geologic time scale: Cambridge University Press, Cambridge, p. 63-86.

    Google Scholar 

  • Opdyke, N. D., 1972, Paleomagnetism of deep-sea cores; Review of Geophysics and Space Physics, v. 10, p. 213.

    Google Scholar 

  • Opdyke, N. D., Glass, B., Hays, J. D., and Foster, J., 1966, Paleomagnetic study of Antarctic deep-sea cores: Science, v. 154, p. 349-357.

    Google Scholar 

  • Pearson, P. N., 1998, Evolutionary concepts in biostratigraphy, in Doyle, P. and Bennett, M. R., eds., Unlocking the stratigraphical record: John Wiley and Sons, Chichester, p. 123–144.

    Google Scholar 

  • Picard, N. D., 1964, Paleomagnetic correlation of units within the Chugwater (Triassic) Formation, west-central Wyoming: American Association of Petroleum Geologists Bulletin, v. 48, p. 269-291.

    Google Scholar 

  • Plint, A. G., 1988, Sharp-based shoreface sequences and “offshore bars” in the Cardium Formation of Alberta: their relationship to relative changes in sea level, in Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C., eds., Sea-level Changes: an integrated approach: Society of Economic Paleontologists and Mineralogists Special Publication 42, p. 357-370.

    Google Scholar 

  • Plint, A. G., 1990, An allostratigraphic correlation of the Muskiki and Marshybank Formations (Coniacian-Santonian) in the foothills and subsurface of the Alberta Basin: Bulletin of Canadian Petroleum Geology, v. 38, p. 288-306.

    Google Scholar 

  • Plint, A. G., Walker, R. G., and Bergman, K. M., 1986, Cardium Formation 6. Stratigraphic framework of the Cardium in subsurface: Bulletin of Canadian Petroleum Geology, v. 34, p. 213-225.

    Google Scholar 

  • Posamentier, H. W., and Allen, G. P., 1999, Siliciclastic sequence stratigraphy—concepts and applications: Society for Sedimentary Geology (SEPM), Concepts in sedimentology and paleontology 7, 210 p.

    Google Scholar 

  • Posamentier, H. W., and Kolla, V., 2003, Seismic geomorphology and stratigraphy of depositional elements in deep-water settings: Journal of Sedimentary Research, v. 73, p. 367-388.

    Google Scholar 

  • Posamentier, H. W., Jervey, M. T., and Vail, P. R., 1988, Eustatic controls on clastic deposition I—Conceptual framework, in Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C., eds., Sea level Changes - an integrated approach: Society of Economic Paleontologists and Mineralogists Special Publication 42, p. 109-124.

    Google Scholar 

  • Remane, J., 2000a, Explanatory note and international stratigraphic chart: UNESCO, Division of Earth Sciences, Paris.

    Google Scholar 

  • Remane, J., 2000b, Should the golden spike glitter?—Comments to the paper of M.-P. Aubry et al.: Episodes, v. 23, p. 211-213.

    Google Scholar 

  • Roof, S. R., Mullins, H. T., Gartner, S., Huang, T. C., Joyce, E., Prutzman, J., and Tjalmsa, L., 1991, Climatic forcing of cyclic carbonate sedimentation during the last 5.4 million years along the west Florida continental margin: Journal of Sedimentary Research, v. 61, p. 1070-1088.

    Google Scholar 

  • Sadler, P. M., 1999a, Constrained optimization approaches to stratigraphic correlation and seriation problems. A user’s guide and reference manuals to the CONOP program family: University of California, Riverside, 142 p.

    Google Scholar 

  • Sadler, P. M., Cooper, R. A., and Melchin, M., 2009: High-resolution, early Paleozoic (Ordovician-Silurian) time scales: Geological Society of America Bulletin, v. 121, p. 887-906.

    Google Scholar 

  • Sadler, P. M., Cooper, R. A., and Crampton, J. S., 2014, High-resolution geobiologic time-lines: progress and potential, fifty years after the advent of graphic correlation: The Sedimentary Record, v. 12, #3, p. 4-9.

    Google Scholar 

  • Sageman, B. B., Singer, B. S., Meyers, S. R., Siewert, S. E., Walaszczyk, I., Condon, D. J., Jicha, B. R., Obradovich, J. D., and Sawyer, D. A., 2014, Integrating 40Ar/39Are, U-Pb and astronomical clocks in the Cretaceous Niobrara Formation, Western Interior Basin, USA: Geological Society of America Bulletin, v. 126, p. 956-973.

    Google Scholar 

  • Salvador, A., ed., 1994, International Stratigraphic Guide, Second edition: International Union of Geological Sciences, Trondheim, Norway, and Geological Society of America, Boulder, Colorado, 214 p.

    Google Scholar 

  • Schlager, W., 1989, Drowning unconformities on carbonate platforms, in Crevello, P. D., Wilson, J. L., Sarg, J. F., and Read, J. F., eds., Controls on carbonate platforms and basin development: Society of Economic Paleontologists and Mineralogists Special Publication 44, p. 15-25.

    Google Scholar 

  • Schlager, W., 2005, Carbonate sedimentology and sequence stratigraphy: SEPM Concepts in Sedimentology and Paleontology #8, 200p.

    Google Scholar 

  • Schwarzacher, W., 1993, Cyclostratigraphy and the Milankovitch theory: Elsevier, Amsterdam, Developments in Sedimentology 52, 225 p.

    Google Scholar 

  • Shackleton, N. J., and Opdyke, N. D., 1976, Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-239, Late Pliocene to latest Pliocene: Geological Society of America Memoir 145, p. 449-464.

    Google Scholar 

  • Shackleton, N. J., McCave, I. N., and Weedon, G. P., eds., 1999, Astronomical (Milankovitch) calibration of the geological time-scale: Philosophical Transactions of the Royal Society, London, Series A, v. 357, p 1731-2007.

    Google Scholar 

  • Shaw, A. B., 1964, Time in stratigraphy: McGraw Hill, New York, 365 p.

    Google Scholar 

  • Sheriff, R. E., 1976, Inferring stratigraphy from seismic data; American Association of Petroleum Geologists Bulletin: v. 60, p. 528-542.

    Google Scholar 

  • Sloss, L. L., 1963, Sequences in the cratonic interior of North America: Geological Society of America Bulletin, v. 74, p. 93-113.

    Google Scholar 

  • Sloss, L. L., Krumbein, W. C., and Dapples, E. C., 1949, Integrated facies analysis; in Longwell, C. R., ed., Sedimentary facies in geologic history: Geological Society of America Memoir 39, p. 91-124.

    Google Scholar 

  • Smith, A. G., Barry, T., Bown, P., Cope, J., Gale, A., Gibbard, P., Gregory, J., Hounslow, M., Kemp, D., Knox, R., Marshall, J., Oates, M., Rawson, P., Powell, J., and Waters, C., 2015, GSSPs, global stratigraphy and correlation: in Smith, D. G., Bailey, R., J., Burgess, P., and Fraser, A., eds., Strata and time: Geological Society, London, Special Publication 404, p. 37-67.

    Google Scholar 

  • Strong, N., and Paola, C., 2008, Valleys that never were: time surfaces versus stratigraphic surfaces: Journal of Sedimentary Research, v. 78, p. 579-593.

    Google Scholar 

  • Sylvester-Bradley, P.C., 1977: Biostratigraphical tests of evolutionary theory; in Kauffman, E. G., and Hazel, J. E., eds., Concepts and methods of biostratigraphy: Dowden, Hutchinson and Ross Inc., Stroudsburg, Pennsylvania, p. 41-64.

    Google Scholar 

  • Tarling, D. H., 1982, Land bridges and plate tectonics: Geobios, v. 15, Supplement 1, p. 361-374.

    Google Scholar 

  • Torrens, H. S., 2002, Some personal thoughts on stratigraphic precision in the twentieth century, in Oldroyd, D. R., ed., The Earth inside and out: some major contributions to geology in the twentieth century: Geological Society, London, Special Publication 192, p. 251-272.

    Google Scholar 

  • Underhill, J R., and Partington, M. A., 1993, Jurassic thermal doming and deflation in the North Sea: implications of the sequence stratigraphy evidence, in Parker, J. R., ed., Petroleum geology of northwest Europe: Proceedings of the 4th Conference, Bath, Geological Society, London, v. 1, p. 337-346.

    Google Scholar 

  • Vai, G. B., 2001, GSSP, IUGS and IGC: an endless story toward a common language in the Earth Sciences: Episodes: v. 24, p. 29-31.

    Google Scholar 

  • Vail, P. R., and Todd, R. G., 1981, Northern North Sea Jurassic unconformities, chronostratigraphy and sea-level changes from seismic stratigraphy, in Illing, L. V., and Hobson, G. D., eds., Petroleum Geology of the continental shelf of northwest Europe: Institute of Petroleum, London, p. 216-235.

    Google Scholar 

  • Vail, P. R., Mitchum, R. M., Jr., Todd, R. G., Widmier, J. M., Thompson, S., III, Sangree, J. B., Bubb, J. N., and Hatlelid, W. G., 1977, Seismic stratigraphy and global changes of sea-level, in Payton, C. E., ed., Seismic stratigraphy - applications to hydrocarbon exploration: American Association of Petroleum Geologists Memoir 26, p. 49-212.

    Google Scholar 

  • Van Couvering, J. A., Castradori, D., Cita, M. B., Hilgen, F. J., and Rio, D., 2000, The base of the Zanclean Stage and of the Pliocene Series: Episodes, v. 23, p. 179-187.

    Google Scholar 

  • Van Hinte, J. E., 1976a, A Jurassic time scale: American Association of Petroleum Geologists Bulletin, v. 60, p. 489-497.

    Google Scholar 

  • Van Hinte, J. E., 1976b, A Cretaceous time scale: American Association of Petroleum Geologists Bulletin, v. 60, p. 498-516.

    Google Scholar 

  • Van Wagoner, J. C., Mitchum, R. M., Jr., Posamentier, H. W., and Vail, P. R., 1987, Seismic stratigraphy interpretation using sequence stratigraphy, Part 2: key definitions of sequence stratigraphy, in Bally, A. W., ed., Atlas of seismic stratigraphy: American Association of Petroleum Geologists Studies in Geology 27, v. 1, p. 11-14.

    Google Scholar 

  • Van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M., Jr., Vail, P. R., Sarg, J. F., Loutit, T. S., and Hardenbol, J., 1988, An overview of the fundamentals of sequence stratigraphy and key definitions, in Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C., eds., Sea level Changes - an integrated approach: Society of Economic Paleontologists and Mineralogists Special Publication 42, p. 39-45.

    Google Scholar 

  • Van Wagoner, J. C., Mitchum, R. M., Campion, K. M. and Rahmanian, V. D. 1990, Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: American Association of Petroleum Geologists Methods in Exploration Series 7, 55 p.

    Google Scholar 

  • Veeken, 2007, Seismic stratigraphy, basin analysis and reservoir characterization: Elsevier, Amsterdam, Seismic Exploration, v. 37, 509 p.

    Google Scholar 

  • Veizer, J. 1989, Strontium isotopes in seawater through time: Annual Review of Earth and Planetary Science Letters, v. 17, p. 141-167.

    Google Scholar 

  • Villeneuve, M., 2004, Radiogenic isotope geochronology, in Gradstein, F. M., Ogg, J. G., and Smith, A. G., eds., A geologic time scale: Cambridge University Press, Cambridge, p. 87-95.

    Google Scholar 

  • Visser, C. F., and Johnson, G. D., 1978, Tectonic control of Late Pliocene molasse sedimentation in a portion of the Jhelum re-entrant, Pakistan: Geologische Rundschau, v. 67, p. 15-37.

    Google Scholar 

  • Walker, R. G., 1990, Facies modeling and sequence stratigraphy: Journal of Sedimentary Petrology, v. 60, p. 777-786.

    Google Scholar 

  • Walker, R. G., 1992, Facies, facies models and modern stratigraphic concepts, in Walker, R. G. and James, N. P., eds., Facies models: response to sea-level change: Geological Association of Canada, p. 1-14.

    Google Scholar 

  • Walsh, S. L., 2004, Solutions in chronostratigraphy: the Paleocene/Eocene boundary debate, and Aubry vs. Hedberg on chronostratigraphic principles: Earth Science Reviews, v. 64, p. 119-155.

    Google Scholar 

  • Westphal, H., Munnecke, A., and Brandano, M., 2008, Effects of diagenesis on the astrochronological approach of defining stratigraphic boundaries in calcareous rhythmites: The Tortonian GSSP: Lethaia, v. 41, p. 461-476.

    Google Scholar 

  • Wignall, P. B., 1991, Ostracod and foraminifera micropaleontology and its bearing on biostratigraphy: a case study from the Kimmeridgian (Late Jurassic) of north west Europe: Palaios, v. 5, p. 219-226.

    Google Scholar 

  • Wilson, J. T., 1966, Did the Atlantic close and then re-open? Nature, v. 211, p. 676-681.

    Google Scholar 

  • Zalasiewicz, J., Smith, A., Brenchley, P., Evans, J., Knox, R., Riley, N., Gale, A., Gregory, F. J., Rushton, A., Gibbard, P., Hesselbo, S., Marshall, J., Oates, M., Rawson, P., and Trewin, N., 2004, Simplifying the stratigraphy of time: Geology, v. 32, p. 1-4.

    Google Scholar 

  • Zecchin, M., and Catuneanu, O., 2013, High-resolution sequence stratigraphy of clastic shelves I: units and bounding surfaces: Marine and Petroleum Geology, v. 39, p. 1-25.

    Google Scholar 

  • Ziegler, A. M., Cocks, L. R. M., and McKerrow, W .S., 1968, The Llandovery transgression of the Welsh borderland: Paleontology, v. 11, p. 736-782.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Miall .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miall, A.D. (2016). Stratigraphy: The Modern Synthesis. In: Stratigraphy: A Modern Synthesis. Springer, Cham. https://doi.org/10.1007/978-3-319-24304-7_7

Download citation

Publish with us

Policies and ethics