Skip to main content

A Real-Time Analysis of Traumatic Brain Injury from T2 Weighted Magnetic Resonance Images Using a Symmetry-Based Algorithm

  • Chapter
  • First Online:
Video Bioinformatics

Part of the book series: Computational Biology ((COBO,volume 22))

  • 1393 Accesses

Abstract

In this chapter, we provide an automated computational algorithm for detection of traumatic brain injury (TBI) from T2-weighted magnetic resonance (MRI) images. The algorithm uses a combination of brain symmetry and 3D connectivity in order to detect the regions of injury. The images are preprocessed by removing all non-brain tissue components. The ability of our symmetry-based algorithm to detect the TBI lesion is compared to manual detection. While manual detection is very operator-dependent which can introduce intra- and inter-operator error, the automated detection method does not have these limitations and can perform skull stripping and lesion detection in real-time and more rapidly than manual detection. The symmetry-based algorithm was able to detect the lesion in all TBI animal groups with no false positives when it was tested versus a naive animal control group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akselrod-Ballin A, Galun M, Gomori JM, Filippi M, Valsasina P, Basri R, Brandt Achi (2009) Automatic segmentation and classification of multiple sclerosis in multichannel MRI. IEEE Trans Biomed Eng 56(10):2461–2469

    Article  Google Scholar 

  2. Albert Huang A, Abugharbieh R, Tam R (2009) A hybrid geometric statistical deformable model for automated 3-D segmentation in brain MRI. IEEE Trans Biomed Eng 56(7):1838–1848

    Article  Google Scholar 

  3. Belayev L, Obenaus A, Zhao W, Saul I, Busto R, Chunyan W, Vigdorchik A, Lin B, Ginsberg MD (2007) Experimental intracerebral hematoma in the rat: characterization by sequential magnetic resonance imaging, behavior, and histopathology. Effect of albumin therapy. Brain Res 1157:146–155

    Article  Google Scholar 

  4. Bianchi A, Bhanu B, Donovan V, Obenaus A (2014) Visual and contextual modeling for the detection of repeated mild traumatic brain injury. IEEE Trans Med Imaging 33(1):11–22

    Google Scholar 

  5. Corrigan JD, Selassie AW, Langlois Orman JA (2010) The epidemiology of traumatic brain injury. J. Head Trauma Rehabil 25(2):72–80

    Article  Google Scholar 

  6. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302

    Article  Google Scholar 

  7. Donovan V, Bianchi A, Hartman R, Bhanu B, Carson MJ, Obenaus A (2012) Computational analysis reveals increased blood deposition following repeated mild traumatic brain injury. Neuroimage Clin 1(1):18–28

    Google Scholar 

  8. Finkelstein EA, Corso PS, Miller TR (2006) The incidence and economic burden of injuries in the United States. Oxford University Press

    Google Scholar 

  9. Gerber DJ, Weintraub AH, Cusick CP, Ricci PE, Whiteneck GG (2004) Magnetic resonance imaging of traumatic brain injury: relationship of T2 SE and T2*GE to clinical severity and outcome. Brain Inj 18(11):1083–1097

    Article  Google Scholar 

  10. Ghosh N, Recker R, Shah A, Bhanu B, Ashwal S, Obenaus A (2011) Automated ischemic lesion detection in a neonatal model of hypoxic ischemic injury. J Magn Reson Imaging 33(4):772–781

    Article  Google Scholar 

  11. Ghosh N, Sun Y, Bhanu B, Ashwal S, Obenaus A (2014) Automated detection of brain abnormalities in neonatal hypoxia ischemic injury from MR images. Med Image Anal 18(7):1059–1069

    Article  Google Scholar 

  12. Huang L, Coats JS, Mohd-Yusof A, Yin Y, Assaad S, Muellner MJ, Kamper JE, Hartman RE, Dulcich M, Donovan VM, Oyoyo U, Obenaus A (2013) Tissue vulnerability is increased following repetitive mild traumatic brain injury in the rat. Brain Res 1499:109–120

    Google Scholar 

  13. Huh S, Ketter TA, Sohn KH, Lee C (2002) Automated cerebrum segmentation from three-dimensional sagittal brain MR images. Comput Biol Med 32(5):311–328

    Article  Google Scholar 

  14. Immonen RJ, Kharatishvili I, Gröhn H, Pitkänen A, Gröhn OHJ (2009) Quantitative MRI predicts long-term structural and functional outcome after experimental traumatic brain injury. Neuroimage 45(1):1–9

    Article  Google Scholar 

  15. Irimia A, Chambers MC, Alger JR, Filippou M, Prastawa MW, Wang B, Hovda DA, Gerig G, Toga AW, Kikinis R, Vespa PM, Van Horn JD (2011) Comparison of acute and chronic traumatic brain injury using semi-automatic multimodal segmentation of MR volumes. J Neurotrauma 28(11):2287–2306

    Article  Google Scholar 

  16. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  Google Scholar 

  17. Kurland D, Hong C, Aarabi B, Gerzanich V, Simard J (2012) Hemorrhagic progression of a contusion after traumatic brain injury: a review. J Neurotrauma 29(1):19–31

    Article  Google Scholar 

  18. Lee B, Newberg A (2005) Neuroimaging in traumatic brain imaging. J Am Soc Exp Neurother 2(April):372–383

    Google Scholar 

  19. Li C, Chenyang X, Gui C, Fox MD (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 19(12):3243–3254

    Article  MathSciNet  Google Scholar 

  20. Lladó X, Oliver A, Cabezas M, Freixenet J, Vilanova JC, Quiles A, Valls L, Ramió-Torrentà L, Rovira À (2012) Segmentation of multiple sclerosis lesions in brain MRI: a review of automated approaches. Inf Sci (NY) 186(1):164–185

    Article  Google Scholar 

  21. Murugavel M, Sullivan JM (2009) Automatic cropping of MRI rat brain volumes using pulse coupled neural networks. Neuroimage 45(3):845–854

    Article  Google Scholar 

  22. Ghosh N, Sun Y, Turenius C, Bhanu B, Obenaus A, Ashwal S (2012) Computational analysis: a bridge to translational stroke treatment. In: Lapchak PA, Zhang JH (eds) Translational Stroke Research. Springer New York, pp 881–909

    Google Scholar 

  23. Obenaus A, Robbins M, Blanco G, Galloway NR, Snissarenko E, Gillard E, Lee S, Currás-Collazo M (2007) Multi-modal magnetic resonance imaging alterations in two rat models of mild neurotrauma. J Neurotrauma 24(7):1147–1160

    Article  Google Scholar 

  24. Oehmichen M, Walter T, Meissner C, Friedrich H-J (2003) Time course of cortical hemorrhages after closed traumatic brain injury: statistical analysis of posttraumatic histomorphological alterations. J Neurotrauma 20(1):87–103

    Article  Google Scholar 

  25. Nobuyuki OTSU (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  26. Park E, Bell JD, Baker AJ (2008) Traumatic brain injury: can the consequences be stopped? CMAJ 178(9):1163–1170

    Article  Google Scholar 

  27. Reilly PR, Bullock (2005) Head injury, pathophysiology and management, vol 77, 2nd edn. Hodder Arnold Publication

    Google Scholar 

  28. Rouania M, Medjram, Doghmane N (2006) Brain MRI segmentation and lesions detection by EM algorithm. In: Proceedings of World Academy Science and Engineering Technology, vol 17, pp 301–304

    Google Scholar 

  29. Schmidt P, Gaser C, Arsic M, Buck D, Förschler A, Berthele A, Hoshi M, Ilg R, Schmid VJ, Zimmer C, Hemmer B, Mühlau M (2012) An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage 59(4):3774–3783

    Article  Google Scholar 

  30. Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM (2001) Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13(5):856–876

    Article  Google Scholar 

  31. Shen S, Szameitat AJ, Sterr A (2008) Detection of infarct lesions from single MRI modality using inconsistency between voxel intensity and spatial location: a 3-D automatic approach. IEEE Trans Inf Technol Biomed 12(4):532–540

    Article  Google Scholar 

  32. Sun Y, Bhanu B, Bhanu S (2009) Automatic symmetry-integrated brain injury detection in mri sequences. In: IEEE computer society conference on computer vision and pattern recognition workshops, 2009. CVPR Workshops 2009, pp 79–86

    Google Scholar 

  33. Suri JS (2001) Two-dimensional fast magnetic resonance brain segmentation. IEEE Eng Med Biol Mag 20(4):84–95

    Article  MathSciNet  Google Scholar 

  34. Tagliaferri F, Compagnone C, Korsic M, Servadei F, Kraus J (2006) A systematic review of brain injury epidemiology in Europe. Acta Neurochir (Wien) 148(3):255–68 (discussion 268)

    Google Scholar 

  35. Vaishnavi S, Rao V, Fann JR Neuropsychiatric problems after traumatic brain injury: unraveling the silent epidemic. Psychosomatics 50(3):198–205

    Google Scholar 

  36. Zhuang AH, Valentino DJ, Toga AW (2006) Skull-stripping magnetic resonance brain images using a model-based level set. Neuroimage 32(1):79–92

    Article  Google Scholar 

  37. Zweckberger K, Erös C, Zimmermann R, Kim S-W, Engel D, Plesnila N (2006) Effect of early and delayed decompressive craniectomy on secondary brain damage after controlled cortical impact in mice. J Neurotrauma 23(7):1083–1093

    Article  Google Scholar 

Download references

Acknowledgements

Devin McBride was supported by an NSF IGERT Video Bioinformatics Fellowship (Grant DGE 0903667). This study was supported by funding from Department of Defense (DCMRP #DR080470 to AO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Obenaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Esfahani, E.T., McBride, D.W., Shafiei, S.B., Obenaus, A. (2015). A Real-Time Analysis of Traumatic Brain Injury from T2 Weighted Magnetic Resonance Images Using a Symmetry-Based Algorithm. In: Bhanu, B., Talbot, P. (eds) Video Bioinformatics. Computational Biology, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-23724-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23724-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23723-7

  • Online ISBN: 978-3-319-23724-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics