Skip to main content

Abstract

Oxygen, carbon dioxide, and nitrogen are gases produced under modified atmosphere packaging (MAP). Nitrogen helps to prevent oxidation by displacing oxygen, whilst CO2 acts as a bacteriostatic. Each of them plays different roles in the biochemical and physiological responses of fruits and vegetables. Respiration rate and ethylene synthesis are among the roles affected by these gases. Changes in such biochemical responses influence the shelf-life and sensorial properties and maintain or increase the nutritional value of fresh produce. However, due to the differences in the biochemical and physiological responses among climacteric and nonclimacteric fresh produce, it is necessary to know which MAP conditions are optimal to have positive effect on the overall quality of fruits and vegetables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

MAP:

Modified atmosphere packaging

O2 :

Oxygen

CO2 :

Carbon dioxide

N2 :

Nitrogen

PVC:

Polyvinyl chloride

PET:

Polyethylene terephthalate

PP:

Polypropylene

PE:

Polyethylene

PPO:

Polyphenol oxidase

TCA:

Glycolysis tricarboxylic acid

PAL:

Phenylalanine ammonia lyase

ACC:

1-Aminocyclopropane-1-carboxylic acid

ACS:

ACC synthase

ACO:

ACC oxidase

MIV:

Minimum inhibitory volume

References

  • Abadias, M., Alegre, I., Oliveira, M., Altisent, R., & Viñas, I. (2012). Growth potential of Escherichia coli O157:H7 on fresh-cut fruits (melon and pineapple) and vegetables (carrot and escarole) stored under different conditions. Food Control, 27, 37–44.

    Article  Google Scholar 

  • Ahvenainen, R. (2003). 2-Active and intelligent packaging: An introduction. In R. Ahvenainen (Ed.), Novel food packaging techniques. Cambridge, UK: Woodhead Publishing.

    Google Scholar 

  • Ali, Z. M., Chin, L.-H., Marimuthu, M., & Lazan, H. (2004). Low temperature storage and modified atmosphere packaging of carambola fruit and their effects on ripening related texture changes, wall modification and chilling injury symptoms. Postharvest Biology and Technology, 33, 181–192.

    Article  Google Scholar 

  • Angós, I., Vírseda, P., & Fernández, T. (2008). Control of respiration and color modification on minimally processed potatoes by means of low and high O2/CO2 atmospheres. Postharvest Biology and Technology, 48, 422–430.

    Article  Google Scholar 

  • Argenta, L. C., Fan, X., & Mattheis, J. P. (2002). Responses of ‘Fuji’ apples to short and long duration exposure to elevated CO2 concentration. Postharvest Biology and Technology, 24, 13–24.

    Article  CAS  Google Scholar 

  • Bapat, V. A., Trivedi, P. K., Ghosh, A., Sane, V. A., Ganapathi, T. R., & Nath, P. (2010). Ripening of fleshy fruit: Molecular insight and the role of ethylene. Biotechnology Advances, 28, 94–107.

    Article  CAS  Google Scholar 

  • Beaudry, R. M. (1999). Effect of O2 and CO2 partial pressure on selected phenomena affecting fruit and vegetable quality. Postharvest Biology and Technology, 15, 293–303.

    Article  Google Scholar 

  • Beckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 63, 129–140.

    Article  CAS  Google Scholar 

  • Brilhante São José, J. F., & Dantas Vanetti, M. C. (2012). Effect of ultrasound and commercial sanitizers in removing natural contaminants and Salmonella enterica Typhimurium on cherry tomatoes. Food Control, 24, 95–99.

    Article  Google Scholar 

  • Büchert, A. M., Civello, P. M., & Martínez, G. A. (2011). Effect of hot air, UV-C, white light and modified atmosphere treatments on expression of chlorophyll degrading genes in postharvest broccoli (Brassica oleracea L.) florets. Scientia Horticulturae, 127, 214–219.

    Article  Google Scholar 

  • Caleb, O. J., Mahajan, P. V., Opara, U. L., & Witthuhn, C. R. (2012). Modelling the respiration rates of pomegranate fruit and arils. Postharvest Biology and Technology, 64, 49–54.

    Article  Google Scholar 

  • Cheng, Y., Liu, L., Zhao, G., Shen, C., Yan, H., Guan, J., et al. (2015). The effects of modified atmosphere packaging on core browning and the expression patterns of PPO and PAL genes in ‘Yali’ pears during cold storage. LWT - Food Science and Technology, 60, 1243–1248.

    Article  CAS  Google Scholar 

  • Chitravathi, K., Chauhan, O., & Raju, P. (2015). Influence of modified atmosphere packaging on shelf-life of green chillies (Capsicum annuum L.). Food Packaging and Shelf Life, 4, 1–9.

    Article  Google Scholar 

  • Choi, D. S., Park, S. H., Choi, S. R., Kim, J. S., & Chun, H. H. (2015). The combined effects of ultraviolet-C irradiation and modified atmosphere packaging for inactivating Salmonella enterica serovar Typhimurium and extending the shelf life of cherry tomatoes during cold storage. Food Packaging and Shelf Life, 3, 19–30.

    Article  Google Scholar 

  • Chun, H. H., & Song, K. B. (2013). The combined effects of aqueous chlorine dioxide, fumaric acid, and ultraviolet-C with modified atmosphere packaging enriched in CO2 for inactivating preexisting microorganisms and Escherichia coli O157:H7 and Salmonella typhimurium inoculated on buckwheat sprouts. Postharvest Biology and Technology, 86, 118–124.

    Article  CAS  Google Scholar 

  • Costa, C., Lucera, A., Conte, A., Mastromatteo, M., Speranza, B., Antonacci, A., et al. (2011). Effects of passive and active modified atmosphere packaging conditions on ready-to-eat table grape. Journal of Food Engineering, 102, 115–121.

    Article  Google Scholar 

  • Czarny, J. C., Grichko, V. P., & Glick, B. R. (2006). Genetic modulation of ethylene biosynthesis and signaling in plants. Biotechnology Advances, 24, 410–419.

    Article  CAS  Google Scholar 

  • Del-Valle, V., Hernández-Muñoz, P., Catalá, R., & Gavara, R. (2009). Optimization of an equilibrium modified atmosphere packaging (EMAP) for minimally processed mandarin segments. Journal of Food Engineering, 91, 474–481.

    Article  CAS  Google Scholar 

  • Deng, Y., Wu, Y., & Li, Y. (2005). Changes in firmness, cell wall composition and cell wall hydrolases of grapes stored in high oxygen atmospheres. Food Research International, 38, 769–776.

    Article  CAS  Google Scholar 

  • Díaz-Mula, H. M., Martínez-Romero, D., Castillo, S., Serrano, M., & Valero, D. (2011). Modified atmosphere packaging of yellow and purple plum cultivars. 1. Effect on organoleptic quality. Postharvest Biology and Technology, 61, 103–109.

    Article  Google Scholar 

  • Ding, C.-K., Chachin, K., Ueda, Y., Imahori, Y., & Wang, C. Y. (2002). Modified atmosphere packaging maintains postharvest quality of loquat fruit. Postharvest Biology and Technology, 24, 341–348.

    Article  CAS  Google Scholar 

  • Dourtoglou, V. G., Mamalos, A., & Makris, D. P. (2006). Storage of olives (Olea europaea) under CO 2 atmosphere: Effect on anthocyanins, phenolics, sensory attributes and in vitro antioxidant properties. Food Chemistry, 99, 342–349.

    Article  CAS  Google Scholar 

  • Eason, J. R., Ryan, D., Page, B., Watson, L., & Coupe, S. A. (2007). Harvested broccoli (Brassica oleracea) responds to high carbon dioxide and low oxygen atmosphere by inducing stress-response genes. Postharvest Biology and Technology, 43, 358–365.

    Article  CAS  Google Scholar 

  • Escalona, V. H., Aguayo, E., & Artés, F. (2007). Modified atmosphere packaging improved quality of kohlrabi stems. LWT - Food Science and Technology, 40, 397–403.

    Article  CAS  Google Scholar 

  • Fernie, A. R., Carrari, F., & Sweetlove, L. J. (2004). Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport. Current Opinion in Plant Biology, 7, 254–261.

    Article  CAS  Google Scholar 

  • Finnegan, E., Mahajan, P. V., O’Connell, M., Francis, G. A., & O’Beirne, D. (2013). Modelling respiration in fresh-cut pineapple and prediction of gas permeability needs for optimal modified atmosphere packaging. Postharvest Biology and Technology, 79, 47–53.

    Article  CAS  Google Scholar 

  • Fonseca, S. C., Oliveira, F. A. R., & Brecht, J. K. (2002). Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: A review. Journal of Food Engineering, 52, 99–119.

    Article  Google Scholar 

  • Gil, M. I., Conesa, M. A., & Artés, F. (2002). Quality changes in fresh cut tomato as affected by modified atmosphere packaging. Postharvest Biology and Technology, 25, 199–207.

    Article  CAS  Google Scholar 

  • Gómez, P. A., & Artés, F. (2005). Improved keeping quality of minimally fresh processed celery sticks by modified atmosphere packaging. LWT - Food Science and Technology, 38, 323–329.

    Article  Google Scholar 

  • Gorny, J. R., & Kader, A. A. (1996). Regulation of ethylene biosynthesis in climacteric apple fruit by elevated CO2 and reduced O2 atmospheres. Postharvest Biology and Technology, 9, 311–323.

    Article  CAS  Google Scholar 

  • Han, J. H. (2005). Innovations in food packaging. Academic Press, California, USA.

    Google Scholar 

  • Holcroft, D. M., & Kader, A. A. (1999). Controlled atmosphere-induced changes in pH and organic acid metabolism may affect color of stored strawberry fruit. Postharvest Biology and Technology, 17, 19–32.

    Article  CAS  Google Scholar 

  • Horev, B., Sela, S., Vinokur, Y., Gorbatsevich, E., Pinto, R., & Rodov, V. (2012). The effects of active and passive modified atmosphere packaging on the survival of Salmonella enterica serotype Typhimurium on washed romaine lettuce leaves. Food Research International, 45, 1129–1132.

    Article  CAS  Google Scholar 

  • Jiang, T., Luo, S., Chen, Q., Shen, L., & Ying, T. (2010). Effect of integrated application of gamma irradiation and modified atmosphere packaging on physicochemical and microbiological properties of shiitake mushroom (Lentinus edodes). Food Chemistry, 122, 761–767.

    Article  CAS  Google Scholar 

  • Jouki, M., & Khazaei, N. (2014). Effect of low-dose gamma radiation and active equilibrium modified atmosphere packaging on shelf life extension of fresh strawberry fruits. Food Packaging and Shelf Life, 1, 49–55.

    Article  Google Scholar 

  • Kader, A. A. (1985). Ethylene-induced senescence and physiological disorders in harvested horticultural crops. HortScience, 20, 54–57.

    CAS  Google Scholar 

  • Kanellis, A. K., Solomos, T., & Roubelakis-Angelakis, K. A. (1991). Suppression of cellulase and polygalacturonase and induction of alcohol dehydrogenase isoenzymes in avocado fruit mesocarp subjected to low oxygen stress. Plant Physiology, 96, 269–274.

    Article  CAS  Google Scholar 

  • Ketsa, S., Wisutiamonkul, A., & Van Doorn, W. G. (2013). Apparent synergism between the positive effects of 1-MCP and modified atmosphere on storage life of banana fruit. Postharvest Biology and Technology, 85, 173–178.

    Article  CAS  Google Scholar 

  • Lee, S. J., & Rahman, A. T. M. M. (2014). Chapter 8—Intelligent packaging for food products. In J. H. Han (Ed.), Innovations in food packaging (2nd ed.). San Diego: Academic Press.

    Google Scholar 

  • Li, Y., Ishikawa, Y., Satake, T., Kitazawa, H., Qiu, X., & Rungchang, S. (2014). Effect of active modified atmosphere packaging with different initial gas compositions on nutritional compounds of shiitake mushrooms (Lentinus edodes). Postharvest Biology and Technology, 92, 107–113.

    Article  CAS  Google Scholar 

  • Li, T., & Zhang, M. (2015). Effects of modified atmosphere package (MAP) with a silicon gum film window on the quality of stored green asparagus (Asparagus officinalis L) spears. LWT - Food Science and Technology, 60, 1046–1053.

    Article  CAS  Google Scholar 

  • Li, P., Zhang, X., Hu, H., Sun, Y., Wang, Y., & Zhao, Y. (2013). High carbon dioxide and low oxygen storage effects on reactive oxygen species metabolism in Pleurotus eryngii. Postharvest Biology and Technology, 85, 141–146.

    Article  CAS  Google Scholar 

  • López-Rubira, V., Conesa, A., Allende, A., & Artés, F. (2005). Shelf life and overall quality of minimally processed pomegranate arils modified atmosphere packaged and treated with UV-C. Postharvest Biology and Technology, 37, 174–185.

    Article  Google Scholar 

  • Mahmoud, B. S. M. (2010). The effects of X-ray radiation on Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri inoculated on whole Roma tomatoes. Food Microbiology, 27, 1057–1063.

    Article  Google Scholar 

  • Mampholo, M. B., Sivakumar, D., & Van Rensburg, J. (2015). Variation in bioactive compounds and quality parameters in different modified atmosphere packaging during postharvest storage of traditional leafy vegetables (Amaranthus cruentus L and Solanum retroflexum). Journal of Food Quality, 38, 1–12.

    Article  CAS  Google Scholar 

  • Matan, N., Rimkeeree, H., Mawson, A., Chompreeda, P., Haruthaithanasan, V., & Parker, M. (2006). Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions. International Journal of Food Microbiology, 107, 180–185.

    Article  CAS  Google Scholar 

  • Mathooko, F. M. (1996). Regulation of respiratory metabolism in fruits and vegetables by carbon dioxide. Postharvest Biology and Technology, 9, 247–264.

    Article  CAS  Google Scholar 

  • Moreira, R. G., Puerta‐Gomez, A. F., Kim, J., & Castell‐Perez, M. E. (2012). Factors affecting radiation D‐values (D10) of an Escherichia coli cocktail and Salmonella typhimurium LT2 inoculated in fresh produce. Journal of Food Science, 77, E104–E111.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, S., Ukuku, D., Juneja, V., & Fan, X. (2014). Effects of UV-C treatment on inactivation of Salmonella enterica and Escherichia coli O157:H7 on grape tomato surface and stem scars, microbial loads, and quality. Food Control, 44, 110–117.

    Article  CAS  Google Scholar 

  • Nielsen, T., & Leufvén, A. (2008). The effect of modified atmosphere packaging on the quality of Honeoye and Korona strawberries. Food Chemistry, 107, 1053–1063.

    Article  CAS  Google Scholar 

  • Niemira, B. A., & Boyd, G. (2013). Influence of modified atmosphere and varying time in storage on the irradiation sensitivity of Salmonella on sliced roma tomatoes. Radiation Physics and Chemistry, 90, 120–124.

    Article  CAS  Google Scholar 

  • Oms-Oliu, G., Soliva-Fortuny, R., & Martín-Belloso, O. (2008). Modeling changes of headspace gas concentrations to describe the respiration of fresh-cut melon under low or superatmospheric oxygen atmospheres. Journal of Food Engineering, 85, 401–409.

    Article  CAS  Google Scholar 

  • Paul, V., Pandey, R., & Srivastava, G. C. (2012). The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene—An overview. Journal of Food Science and Technology, 49, 1–21.

    Article  CAS  Google Scholar 

  • Pech, J.-C., Bouzayen, M., & Latché, A. (2008). Climacteric fruit ripening: Ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Science, 175, 114–120.

    Article  CAS  Google Scholar 

  • Rai, D. R., & Paul, S. (2007). Transient state in-pack respiration rates of mushroom under modified atmosphere packaging based on enzyme kinetics. Biosystems Engineering, 98, 319–326.

    Article  Google Scholar 

  • Rivera, C. S., Venturini, M. E., Marco, P., Oria, R., & Blanco, D. (2011). Effects of electron-beam and gamma irradiation treatments on the microbial populations, respiratory activity and sensory characteristics of Tuber melanosporum truffles packaged under modified atmospheres. Food Microbiology, 28, 1252–1260.

    Article  Google Scholar 

  • Sawe, C. T., Onyango, C. M., & Njage, P. M. K. (2014). Current food safety management systems in fresh produce exporting industry are associated with lower performance due to context riskiness: Case study. Food Control, 40, 335–343.

    Article  Google Scholar 

  • Scifò, G. O., Randazzo, C. L., Restuccia, C., Fava, G., & Caggia, C. (2009). Listeria innocua growth in fresh cut mixed leafy salads packaged in modified atmosphere. Food Control, 20, 611–617.

    Article  Google Scholar 

  • Selcuk, N., & Erkan, M. (2014). Changes in antioxidant activity and postharvest quality of sweet pomegranates cv. Hicrannar under modified atmosphere packaging. Postharvest Biology and Technology, 92, 29–36.

    Article  CAS  Google Scholar 

  • Sen, C., Mishra, H., & Srivastav, P. (2012). Modified atmosphere packaging and active packaging of banana (Musa spp.): A review on control of ripening and extension of shelf life. Journal of Stored Products and Postharvest Research, 3, 122–132.

    Google Scholar 

  • Singh, R., Giri, S. K., & Kotwaliwale, N. (2014). Shelf-life enhancement of green bell pepper (Capsicum annuum L.) under active modified atmosphere storage. Food Packaging and Shelf Life, 1, 101–112.

    Article  Google Scholar 

  • Somboonkaew, N., & Terry, L. A. (2011). Influence of temperature and packaging on physiological and chemical profiles of imported litchi fruit. Food Research International, 44, 1962–1969.

    Article  CAS  Google Scholar 

  • Taniwaki, M. H., Hocking, A. D., Pitt, J. I., & Fleet, G. H. (2001). Growth of fungi and mycotoxin production on cheese under modified atmospheres. International Journal of Food Microbiology, 68, 125–133.

    Article  CAS  Google Scholar 

  • Toivonen, P. M., & Brummell, D. A. (2008). Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biology and Technology, 48, 1–14.

    Article  CAS  Google Scholar 

  • Trinchero, G. D., Sozzi, G. O., Cerri, A. M., Vilella, F., & Fraschina, A. A. (1999). Ripening-related changes in ethylene production, respiration rate and cell-wall enzyme activity in goldenberry (Physalis peruviana L.), a solanaceous species. Postharvest Biology and Technology, 16, 139–145.

    Article  CAS  Google Scholar 

  • Waghmare, R. B., & Annapure, U. S. (2013). Combined effect of chemical treatment and/or modified atmosphere packaging (MAP) on quality of fresh-cut papaya. Postharvest Biology and Technology, 85, 147–153.

    Article  CAS  Google Scholar 

  • Wani, A. A., Singh, P., & Langowski, H. C. (2014). Food technologies: Packaging. In Y. Motarjemi (Ed.), Encyclopedia of food safety. Waltham: Academic Press.

    Google Scholar 

  • Xi, W., Zhang, Q., Lu, X., Wei, C., Yu, S., & Zhou, Z. (2014). Improvement of flavour quality and consumer acceptance during postharvest ripening in greenhouse peaches by carbon dioxide enrichment. Food Chemistry, 164, 219–227.

    Article  CAS  Google Scholar 

  • Ye, J.-J., Li, J.-R., Han, X.-X., Zhang, L., Jiang, T.-J., & Miao, X. (2012). Effects of active modified atmosphere packaging on postharvest quality of shiitake mushrooms (Lentinula edodes) stored at cold storage. Journal of Integrative Agriculture, 11, 474–482.

    Article  CAS  Google Scholar 

  • Zhang, B.-Y., Samapundo, S., Pothakos, V., De Baenst, I., Sürengil, G., Noseda, B., et al. (2013). Effect of atmospheres combining high oxygen and carbon dioxide levels on microbial spoilage and sensory quality of fresh-cut pineapple. Postharvest Biology and Technology, 86, 73–84.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. González-Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ovando-Martínez, M., Ruiz-Pardo, C.A., Quirós-Sauceda, A.E., Velderrain-Rodríguez, G.R., González-Aguilar, G.A., Ayala-Zavala, J.F. (2016). Oxygen, Carbon Dioxide, and Nitrogen. In: Siddiqui, M., Ayala Zavala, J., Hwang, CA. (eds) Postharvest Management Approaches for Maintaining Quality of Fresh Produce. Springer, Cham. https://doi.org/10.1007/978-3-319-23582-0_1

Download citation

Publish with us

Policies and ethics