Skip to main content

Part of the book series: Texts in Applied Mathematics ((TAM,volume 63))

  • 8022 Accesses

Abstract

This chapter and its sequels consider several spectral methods for uncertainty quantification. At their core, these are orthogonal decomposition methods in which a random variable stochastic process (usually the solution of interest) over a probability space \((\varTheta,\mathcal{F},\mu )\) is expanded with respect to an appropriate orthogonal basis of \(L^{2}(\varTheta,\mu; \mathbb{R})\).

The mark of a mature, psychologically healthy mind is indeed the ability to live with uncertainty and ambiguity, but only as much as there really is.

Julian Baggini

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the case that \(\mathcal{X}\) is compact, it is enough to assume that the covariance function is continuous, from which it follows that it is bounded and hence square-integrable on \(\mathcal{X}\times \mathcal{X}\).

References

  • H. Bahouri, J.-Y. Chemin, and R. Danchin. Fourier Analysis and Nonlinear Partial Differential Equations, volume 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

    Google Scholar 

  • R. H. Cameron and W. T. Martin. The orthogonal development of non-linear functionals in series of Fourier–Hermite functionals. Ann. of Math. (2), 48:385–392, 1947.

    Google Scholar 

  • M. Dashti, S. Harris, and A. Stuart. Besov priors for Bayesian inverse problems. Inverse Probl. Imaging, 6(2):183–200, 2012. doi: 10.3934/ipi. 2012.6.183.

    Article  MathSciNet  MATH  Google Scholar 

  • J. de Leeuw. History of Nonlinear Principal Component Analysis, 2013. http://www.stat.ucla.edu/Ëœdeleeuw/janspubs/2013/notes/ deleeuw_U_13b.pdf.

    Google Scholar 

  • N. Dunford and J. T. Schwartz. Linear Operators. Part II: Spectral Theory. Interscience Publishers John Wiley & Sons New York-London, 1963.

    Google Scholar 

  • R. G. Ghanem and P. D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer-Verlag, New York, 1991. doi: 10.1007/ 978-1-4612-3094-6.

    Book  MATH  Google Scholar 

  • A. Haar. Zur Theorie der orthogonalen Funktionensysteme. Math. Ann., 69 (3):331–371, 1910. doi: 10.1007/BF01456326.

    Article  MathSciNet  MATH  Google Scholar 

  • I. T. Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer-Verlag, New York, second edition, 2002.

    Google Scholar 

  • K. Karhunen. Ãœber lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys., 1947(37):79, 1947.

    Google Scholar 

  • D. D. Kosambi. Statistics in function space. J. Indian Math. Soc. (N.S.), 7: 76–88, 1943.

    Google Scholar 

  • M. Lassas, E. Saksman, and S. Siltanen. Discretization-invariant Bayesian inversion and Besov space priors. Inverse Probl. Imaging, 3(1):87–122, 2009. doi: 10.3934/ipi.2009.3.87.

    Article  MathSciNet  MATH  Google Scholar 

  • O. P. Le Maître and O. M. Knio. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. Scientific Computation. Springer, New York, 2010. doi: 10.1007/ 978-90-481-3520-2.

    Book  Google Scholar 

  • O. P. Le Maître, O. M. Knio, H. N. Najm, and R. G. Ghanem. Uncertainty propagation using Wiener–Haar expansions. J. Comput. Phys., 197(1):28–57, 2004a. doi: 10.1016/j.jcp.2003.11.033.

    Article  MathSciNet  MATH  Google Scholar 

  • O. P. Le Maître, H. N. Najm, R. G. Ghanem, and O. M. Knio. Multi-resolution analysis of Wiener-type uncertainty propagation schemes. J. Comput. Phys., 197(2):502–531, 2004b. doi: 10.1016/j.jcp.2003.12.020.

    Article  MathSciNet  MATH  Google Scholar 

  • O. P. Le Maître, H. N. Najm, P. P. Pébay, R. G. Ghanem, and O. M. Knio. Multi-resolution-analysis scheme for uncertainty quantification in chemical systems. SIAM J. Sci. Comput., 29(2):864–889 (electronic), 2007. doi: 10.1137/050643118.

    Google Scholar 

  • M. Loève. Probability Theory. II. Graduate Texts in Mathematics, Vol. 46. Springer-Verlag, New York, fourth edition, 1978.

    Google Scholar 

  • J. Mercer. Functions of positive and negative type and their connection with the theory of integral equations. Phil. Trans. Roy. Soc. A, 209:415–446, 1909.

    Article  MATH  Google Scholar 

  • Y. Meyer. Wavelets and Operators, volume 37 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1992. Translated from the 1990 French original by D. H. Salinger.

    Google Scholar 

  • R. C. Smith. Uncertainty Quantification: Theory, Implementation, and Applications, volume 12 of Computational Science & Engineering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2014.

    Google Scholar 

  • C. Soize and R. Ghanem. Physical systems with random uncertainties: chaos representations with arbitrary probability measure. SIAM J. Sci. Comput., 26(2):395–410 (electronic), 2004. doi: 10.1137/S1064827503424505.

    Google Scholar 

  • I. Steinwart and C. Scovel. Mercer’s theorem on general domains: on the interaction between measures, kernels, and RKHSs. Constr. Approx., 35 (3):363–417, 2012. doi: 10.1007/s00365-012-9153-3.

    Article  MathSciNet  MATH  Google Scholar 

  • N. Wiener. The homogeneous chaos. Amer. J. Math., 60(4):897–936, 1938. doi: 10.2307/2371268.

    Article  MathSciNet  Google Scholar 

  • D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton, NJ, 2010.

    Google Scholar 

  • D. Xiu and G. E. Karniadakis. The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput., 24(2):619–644 (electronic), 2002. doi: 10.1137/S1064827501387826.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sullivan, T.J. (2015). Spectral Expansions. In: Introduction to Uncertainty Quantification. Texts in Applied Mathematics, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-23395-6_11

Download citation

Publish with us

Policies and ethics