Skip to main content

Input and Output Systems of Orexin Neurons

  • Chapter
  • First Online:
Orexin and Sleep

Abstract

Orexin/hypocretin neurons are localized in the lateral hypothalamic area (LH)/perifornical area (PF) and project their fibers widely to many regions in the brain. Two types of orexin receptors, OX1 and OX2, are expressed in various brain areas, including neurons controlling fundamental functions in the brain, such as sleep/wake behavior, feeding and drinking, homeostatic regulation, neuroendocrine and autonomic responses. In this chapter, we summarize the input and output pathways of orexin neurons in the rodent brain and discuss their physiological roles from an anatomical point of view. We then introduce recent publications of mouse studies, demonstrating functional evidence of these neural pathways from/to orexin neurons especially for controlling sleep/wake behavior. These new, integrated anatomical-physiological evidences well document the important circuitry of orexin neurons in the mammalian brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAD:

Anterior amygdaloid area, dorsal part

ac:

Anterior commissure

AcbSh:

Nucleus accumbens

AHA:

Anterior hypothalamic area

Arc:

Arcuate nucleus

BST:

Bed nucleus of the stria terminalis

CeM:

Central amygdaloid nucleus

CM:

Central medial nucleus of thalamus

DMH:

Dorsomedial hypothalamic nucleus

DR:

Dorsal raphe nucleus

GiV:

Gigantocellular reticular nucleus, ventral part

HDB:

Horizontal limb of diagonal band of Broca

IL:

Infralimbic cortex

LC:

Locus coeruleus

LDTg:

Laterodorsal tegmental nucleus

LH:

Lateral hypothalamic area

LPB:

Lateral parabrachial nucleus

LPO:

Lateral preoptic area

LS:

Lateral septal nucleus

MCPO:

Magnocellular preoptic nucleus

MeA:

Medial amygdaloid nucleus, anterior part

mfb:

Medial forebrain bundle

MnR:

Median raphe nucleus

MPA:

Medial preoptic area

mPFC:

Medial prefrontal cortex

MS:

Medial septal nucleus

PAG:

Periaqueductal gray

PB:

Parabrachial nucleus

PF:

Perifornical area

PH:

Posterior hypothalamic area

PMnR:

Paramedian raphe nucleus

POA:

Preoptic area

PPTg:

Pedunculopontine tegmental nucleus

PreC:

Precoeruleus area

PVH:

Paraventricular nucleus of hypothalamus

PVT:

Paraventricular nucleus of thalamus

RMg:

Raphe magnus nucleus

S:

Subiculum

SCN:

Suprachiasmatic nucleus

SI:

Substantia innominata

SNC:

Substantia nigra compact part

SNL:

Substantia nigra lateral part

SNR:

Substantia nigra reticular part

Sol:

Nucleus of the solitary tract

SPZ:

Subparaventricular zone

SuM:

Supramammillary nucleus

TMN:

Tuberomammillary nucleus

VDB:

Ventral limb of diagonal band of Broca

VLPO:

Ventrolateral preoptic area

VMH:

Ventromedial hypothalamic nucleus

VTA:

Ventral tegmental area

References

  • Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450(7168):420–424

    Article  CAS  PubMed  Google Scholar 

  • Agostinelli LJ, Ferrari LL, Arrigoni E, Lowell BB, Scammell TE (2013) Basal forebrain efferents to the orexin neurons. Sleep 36 (Abstr Suppl):0061

    Google Scholar 

  • Alexandre C, Mochizuki T, Arrigoni E, Yamamoto M, Clark EL, Scammell TE (2012) Orexin signaling in the basal forebrain promotes EEG activation and wakefulness. Sleep 35:A31

    Google Scholar 

  • Alexandre C, Andermann ML, Scammell TE (2013) Control of arousal by the orexin neurons. Curr Opin Neurobiol 23(5):752–759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anderson MP, Mochizuki T, Xie J, Fischler W, Manger JP, Talley EM, Scammell TE, Tonegawa S (2005) Thalamic Cav3.1 T-type Ca2+ channel plays a crucial role in stabilizing sleep. Proc Natl Acad Sci USA 102(5):1743–1748

    Google Scholar 

  • Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci USA 104(12):5163–5168

    Article  PubMed Central  PubMed  Google Scholar 

  • Arrigoni E, Mochizuki T, Scammell TE (2010) Activation of the basal forebrain by the orexin/hypocretin neurones. Acta Physiol (Oxf) 198(3):223–235

    Article  CAS  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Burgess CR, Oishi Y, Mochizuki T, Peever JH, Scammell TE (2013) Amygdala lesions reduce cataplexy in orexin knock-out mice. J Neurosci 33(23):9734–9742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988) Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8(11):4007–4026

    CAS  PubMed  Google Scholar 

  • Cape EG, Jones BE (2000) Effects of glutamate agonist versus procaine microinjections into the basal forebrain cholinergic cell area upon gamma and theta EEG activity and sleep-wake state. Eur J Neurosci 12(6):2166–2184

    Article  CAS  PubMed  Google Scholar 

  • Carter ME, Adamantidis A, Ohtsu H, Deisseroth K, de Lecea L (2009) Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci 29(35):10939–10949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carter ME, Brill J, Bonnavion P, Huguenard JR, Huerta R, de Lecea L (2012) Mechanism for hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci USA 109(39):E2635–E2644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–451

    Article  CAS  PubMed  Google Scholar 

  • Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J (2003) Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci 23(33):10691–10702

    CAS  PubMed  Google Scholar 

  • Clark EL, Baumann CR, Cano G, Scammell TE, Mochizuki T (2009) Feeding-elicited cataplexy in orexin knockout mice. Neuroscience 161(4):970–977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Date Y, Ueta Y, Yamashita H, Yamaguchi H, Matsukura S, Kangawa K, Sakurai T, Yanagisawa M, Nakazato M (1999) Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci USA 96(2):748–753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eggermann E, Serafin M, Bayer L, Machard D, Saint-Mleux B, Jones BE, Mühlethaler M (2001) Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience 108(2):177–181

    Article  CAS  PubMed  Google Scholar 

  • España RA, Valentino RJ, Berridge CW (2003) Fos immunoreactivity in hypocretin-synthesizing and hypocretin-1 receptor-expressing neurons: effects of diurnal and nocturnal spontaneous waking, stress and hypocretin-1 administration. Neuroscience 121(1):201–217

    Article  PubMed  Google Scholar 

  • Estabrooke IV, McCarthy MT, Ko E, Chou TC, Chemelli RM, Yanagisawa M, Saper CB, Scammell TE (2001) Fos expression in orexin neurons varies with behavioral state. J Neurosci 21(5):1656–1662

    CAS  PubMed  Google Scholar 

  • Fuller PM, Sherman D, Pedersen NP, Saper CB, Lu J (2011) Reassessment of the structural basis of the ascending arousal system. J Comp Neurol 519(5):933–956

    Article  PubMed Central  PubMed  Google Scholar 

  • Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, Sugiyama F, Yagami K, Goto K, Yanagisawa M, Sakurai T (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30(2):345–354

    Article  CAS  PubMed  Google Scholar 

  • Harris GC, Wimmer M, Aston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437(7058):556–559

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa E, Yanagisawa M, Sakurai T, Mieda M (2014) Orexin neurons suppress narcolepsy via 2 distinct efferent pathways. J Clin Invest 124(2):604–616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hassani OK, Lee MG, Henny P, Jones BE (2009) Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep-wake cycle. J Neurosci 29(38):11828–11840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kayaba Y, Nakamura A, Kasuya Y, Ohuchi T, Yanagisawa M, Komuro I, Fukuda Y, Kuwaki T (2003) Attenuated defense response and low basal blood pressure in orexin knockout mice. Am J Physiol Regul Integr Comp Physiol 285(3):R581–R593

    Article  PubMed  Google Scholar 

  • Lee MG, Hassani OK, Alonso A, Jones BE (2005) Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J Neurosci 25(17):4365–4369

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Gao XB, Sakurai T, van den Pol AN (2002) Hypocretin/orexin excites hypocretin neurons via a local glutamate neurons—a potential mechanism for orchestrating the hypothalamic arousal system. Neuron 36:1169–1181

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Zhang YH, Chou TC, Gaus SE, Elmquist JK, Shiromani P, Saper CB (2001) Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation. J Neurosci 21(13):4864–4874

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435(1):6–25

    Article  CAS  PubMed  Google Scholar 

  • McGinty D, Szymusiak R (2001) Brain structures and mechanisms involved in the generation of NREM sleep: focus on the preoptic hypothalamus. Sleep Med Rev 5(4):323–342

    Article  PubMed  Google Scholar 

  • McGinty D, Gong H, Suntsova N, Alam MN, Methippara M, Guzman-Marin R, Szymusiak R (2004) Sleep-promoting functions of the hypothalamic median preoptic nucleus: inhibition of arousal systems. Arch Ital Biol 142(4):501–509

    CAS  PubMed  Google Scholar 

  • Mochizuki T, Crocker A, McCormack S, Yanagisawa M, Sakurai T, Scammell TE (2004) Behavioral state instability in orexin knockout mice. J Neurosci 24(28):6291–6300

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki T, Klerman EB, Sakurai T, Scammell TE (2006) Elevated body temperature during sleep in orexin knockout mice. Am J Physiol Regul Integr Comp Physiol 291(3):R533–R540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mochizuki T, Arrigoni E, Marcus JN, Clark EL, Yamamoto M, Honer M, Borroni E, Lowell BB, Elmquist JK, Scammell TE (2011) Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proc Natl Acad Sci USA 108(11):4471–4476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muraki Y, Yamanaka A, Tsujino N, Kilduff TS, Goto K, Sakurai T (2004) Serotonergic regulation of the orexin/hypocretin neurons through the 5-HT1A receptor. J Neurosci 24:7159–7166

    Article  CAS  PubMed  Google Scholar 

  • Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K (1999) Distribution of orexin neurons in the adult rat brain. Brain Res 827(1–2):243–260

    Article  CAS  PubMed  Google Scholar 

  • Oishi Y, Williams RH, Agostinelli L, Arrigoni E, Fuller PM, Mochizuki T, Saper CB, Scammell TE (2013) Role of the medial prefrontal cortex in cataplexy. J Neurosci 33(23):9743–9751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18(23):9996–10015

    CAS  PubMed  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941

    Article  CAS  PubMed  Google Scholar 

  • Saito YC, Tsujino N, Hasegawa E, Akashi K, Abe M, Mieda M, Sakimura K, Sakurai T (2013) GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons. Front Neural Circuits 7:192. doi:10.110.3389/fncir.2013.00192

    Article  PubMed Central  PubMed  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(4):573–585

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T, Nagata R, Yamanaka A, Kawamura H, Tsujino N, Muraki Y, Kageyama H, Kunita S, Takahashi S, Goto K, Koyama Y, Shioda S, Yanagisawa M (2005) Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron 46(2):297–308

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24(12):726–731

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Lu J, Chou TC, Gooley J (2005) The hypothalamic integrator for circadian rhythms. Trends Neurosci 28(3):152–157

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68(6):1023–1042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sasaki K, Suzuki M, Mieda M, Tsujino N, Roth B, Sakurai T (2011) Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLoS ONE 6(5):e20360. doi:10.20310.21371/journal.pone.0020360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271(5246):216–219

    Article  CAS  PubMed  Google Scholar 

  • Sherin JE, Elmquist JK, Torrealba F, Saper CB (1998) Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 18(12):4705–4721

    CAS  PubMed  Google Scholar 

  • Tabuchi S, Tsunematsu T, Kilduff TS, Sugio S, Xu M, Tanaka KF, Takahashi S, Tominaga M, Yamanaka A (2013) Influence of inhibitory serotonergic inputs to orexin/hypocretin neurons on the diurnal rhythm of sleep and wakefulness. Sleep 36(9):1391–1404

    PubMed Central  PubMed  Google Scholar 

  • Takahashi K, Lin JS, Sakai K (2009) Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice. Neuroscience 161(1):269–292

    Article  CAS  PubMed  Google Scholar 

  • Tsunematsu T, Kilduff TS, Boyden ES, Takahashi S, Tominaga M, Yamanaka A (2011) Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. J Neurosci 31(29):10529–10539

    Article  CAS  PubMed  Google Scholar 

  • Tsunematsu T, Tabuchi S, Tanaka KF, Boyden ES, Tominaga M, Yamanaka A (2013) Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice. Behav Brain Res 255:64–74

    Article  CAS  PubMed  Google Scholar 

  • Vetrugno R, D’Angelo R, Moghadam KK, Vandi S, Franceschini C, Mignot E, Montagna P, Plazzi G (2010) Behavioural and neurophysiological correlates of human cataplexy: a video-polygraphic study. Clin Neurophysiol 121(2):153–162

    Article  PubMed  Google Scholar 

  • Willie JT, Chemelli RM, Sinton CM, Tokita S, Williams SC, Kisanuki YY, Marcus JN, Lee C, Elmquist JK, Kohlmeier KA, Leonard CS, Richardson JA, Hammer RE, Yanagisawa M (2003) Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes. Neuron 38(5):715–730

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka A, Muraki Y, Tsujino N, Goto K, Sakurai T (2003) Regulation of orexin neurons by the monoaminergic and cholinergic systems. Biochem Biophys Res Commun 303:120–129

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka A, Tabuchi S, Tsunematsu T, Fukazawa Y, Tominaga M (2010) Orexin directly excites orexin neurons through orexin 2 receptor. J Neurosci 30(38):12642–12652

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, McCormack S, España RA, Crocker A, Scammell TE (2006) Afferents to the orexin neurons of the rat brain. J Comp Neurol 494(5):845–861

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang W, Sakurai T, Fukuda Y, Kuwaki T (2006) Orexin neuron-mediated skeletal muscle vasodilation and shift of baroreflex during defense response in mice. Am J Physiol Regul Integr Comp Physiol 290(6):R1654–R1663

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Writing of this paper was supported in part by the grant from the NIH/NHLBI (HL095491).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takatoshi Mochizuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mochizuki, T., Yoshida-Court, K. (2015). Input and Output Systems of Orexin Neurons. In: Sakurai, T., Pandi-Perumal, S., Monti, J. (eds) Orexin and Sleep. Springer, Cham. https://doi.org/10.1007/978-3-319-23078-8_3

Download citation

Publish with us

Policies and ethics