Skip to main content

Abstract

The SIFT flow algorithm has been widely used for the image matching/ registration task and it is particularly effective in handling image pairs from similar scenes but with different object configurations. The way in which the dense SIFT features are computed at a fixed scale in the SIFT flow method might however limit its capability of dealing with scenes having great scale changes. In this work, we propose a simple, intuitive, and effective approach, Scale-Space SIFT flow, to deal with the large object scale differences. We introduce a scale field to the SIFT flow function to automatically explore the scale changes. Our approach achieves a similar performance as the SIFT flow method for natural scenes but obtains significant improvement for the images with large scale differences. Compared with a recent method that addresses a similar problem, our approach shows its advantage being more effective and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011)

    Article  Google Scholar 

  2. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  3. Crowley, J.: A Representation for Visual Information. Ph.D. thesis, Carnegie Mellon University (1981)

    Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893. IEEE, New York (2005)

    Google Scholar 

  5. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Int. J. Comput. Vis. 70(1), 41–54 (2006)

    Article  Google Scholar 

  6. Hassner, T., Mayzels, V., Zelnik-Manor, L.: On sifts and their scales. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 1522–1528. IEEE, New York (2012)

    Google Scholar 

  7. Kim, J., Liu, C., Sha, F., Grauman, K.: Deformable spatial pyramid matching for fast dense correspondences. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 2307–2314. IEEE, New York (2013)

    Google Scholar 

  8. Kokkinos, I., Yuille, A.: Scale invariance without scale selection. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE, New York (2008)

    Google Scholar 

  9. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178. IEEE, New York (2006)

    Google Scholar 

  10. Lindeberg, T.: Scale-Space Theory in Computer Vision. Springer Science & Business Media, New York (1993)

    MATH  Google Scholar 

  11. Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 79–116 (1998)

    Article  Google Scholar 

  12. Liu, H., Yan, S.: Common visual pattern discovery via spatially coherent correspondences. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 1609–1616. IEEE, New York (2010)

    Google Scholar 

  13. Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.T.: Sift flow: Dense correspondence across different scenes. In: European Conference on Computer Vision, pp. 28–42. Springer, New York (2008)

    Google Scholar 

  14. Liu, C., Yuen, J., Torralba, A.: Nonparametric scene parsing: label transfer via dense scene alignment. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 1972–1979. IEEE, New York (2009)

    Google Scholar 

  15. Liu, C., Yuen, J., Torralba, A.: Nonparametric scene parsing via label transfer. Trans. Pattern Anal. Mach. Intell. 33(12), 2368–2382 (2011)

    Article  Google Scholar 

  16. Liu, C., Yuen, J., Torralba, A.: Sift flow: dense correspondence across scenes and its applications. Trans. Pattern Anal. Mach. Intell. 33(5), 978–994 (2011)

    Article  Google Scholar 

  17. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  18. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)

    Article  Google Scholar 

  19. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  20. Rubinstein, M., Liu, C., Freeman, W.T.: Annotation propagation in large image databases via dense image correspondence. In: European Conference on Computer Vision, pp. 85–99. Springer (2012)

    Google Scholar 

  21. Tola, E., Lepetit, V., Fua, P.: Daisy: An efficient dense descriptor applied to wide-baseline stereo. Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)

    Article  Google Scholar 

  22. Witkin, A.: Scale space filtering. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 1019–1022 (1983)

    Google Scholar 

  23. Yuille, A.L., Poggio, T.A.: Scaling theorems for zero crossings. Trans. Pattern Anal. Mach. Intell. 15(1), 15–25 (1986)

    Article  Google Scholar 

  24. Zhao, J., Ma, J., Tian, J., Ma, J., Zhang, D.: A robust method for vector field learning with application to mismatch removing. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 2977–2984. IEEE, New York (2011)

    Google Scholar 

  25. Zhou, F., De la Torre, F.: Factorized graph matching. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 127–134. IEEE, New York (2012)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (grant No. 61222308) and the NSF awards IIS-1216528 (IIS-1360566), IIS-0844566 (IIS-1360568), and IIS-0917141.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuowen Tu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Qiu, W., Wang, X., Bai, X., Yuille, A., Tu, Z. (2016). Scale-Space SIFT Flow. In: Hassner, T., Liu, C. (eds) Dense Image Correspondences for Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-319-23048-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23048-1_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23047-4

  • Online ISBN: 978-3-319-23048-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics