Skip to main content

Contribution of the Epstein-Barr Virus to the Pathogenesis of Hodgkin Lymphoma

  • Chapter
  • First Online:
Epstein Barr Virus Volume 1

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 390))

Abstract

The morphology of the pathognomonic Hodgkin and Reed-Sternberg cells (HRS) of Hodgkin lymphoma was described over a century ago, yet it was only relatively recently that the B-cell origin of these cells was identified. In a proportion of cases, HRS cells harbour monoclonal forms of the B lymphotropic Epstein-Barr virus (EBV). This review summarises current knowledge of the pathogenesis of Hodgkin lymphoma with a particular emphasis on the contribution of EBV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCR:

B-cell receptor

B2m:

Beta-2 microglobulin

CTL:

Cytotoxic T lymphocyte

DDR1:

Discoidin domain receptor 1

DLBCL:

Diffuse large B-cell lymphoma

EBERS:

EBV-encoded RNAs

EBNA:

EBV nuclear antigen

EBF1:

Early B-cell factor 1

EBV:

Epstein-Barr virus

HAART:

Highly active anti-retroviral therapy

HRS:

Hodgkin and Reed-Sternberg

HL:

Hodgkin lymphoma

HLA:

Human leucocyte antigen

IM:

Infectious mononucleosis

ITAM:

Immunoreceptor tyrosine activation motif

JAK:

Janus kinase

L&H:

Lymphocytic and histiocytic

LMP:

Latent membrane protein

NF-κB:

Nuclear factor kappa B

NLP:

Nodular lymphocyte predominant

PD-L1:

Programmed cell death-ligand 1

PI3K:

Phosphatidylinositol-3-kinase

REAL:

Revised European American Lymphoma

RTK:

Receptor tyrosine kinase

STAT:

Signal transducer and activator of transcription

TGFβ:

Transforming growth factor β

TNF:

Tumour necrosis factor

WHO:

World Health Organization

References

  • Aldinucci D, Poletto D, Gloghini A, Nanni P, Degan M, Perin T et al (2002) Expression of functional interleukin-3 receptors on Hodgkin and Reed-Sternberg cells. Am J Pathol 160(2):585–596 Epub 2002/02/13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aldinucci D, Lorenzon D, Cattaruzza L, Pinto A, Gloghini A, Carbone A et al (2008) Expression of CCR5 receptors on Reed-Sternberg cells and Hodgkin lymphoma cell lines: involvement of CCL5/Rantes in tumor cell growth and microenvironmental interactions. Int J Cancer 122(4):769–776 Epub 2007/10/16

    Article  CAS  PubMed  Google Scholar 

  • Aldinucci D, Gloghini A, Pinto A, De Filippi R, Carbone A (2010) The classical Hodgkin’s lymphoma microenvironment and its role in promoting tumour growth and immune escape. J Pathol 221(3):248–263 Epub 2010/06/09

    Article  CAS  PubMed  Google Scholar 

  • Altmann M, Pich D, Ruiss R, Wang J, Sugden B, Hammerschmidt W (2006) Transcriptional activation by EBV nuclear antigen 1 is essential for the expression of EBV’s transforming genes. Proc Natl Acad Sci USA 103(38):14188–14193 Epub 2006/09/13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alvaro-Naranjo T, Lejeune M, Salvado-Usach MT, Bosch-Princep R, Reverter-Branchat G, Jaen-Martinez J et al (2005) Tumor-infiltrating cells as a prognostic factor in Hodgkin’s lymphoma: a quantitative tissue microarray study in a large retrospective cohort of 267 patients. Leuk Lymphoma 46(11):1581–1591 Epub 2005/10/21

    Article  PubMed  Google Scholar 

  • Anagnostopoulos I, Herbst H, Niedobitek G, Stein H (1989) Demonstration of monoclonal EBV genomes in Hodgkin’s disease and Ki-1-positive anaplastic large cell lymphoma by combined Southern blot and in situ hybridization. Blood 74(2):810–816

    CAS  PubMed  Google Scholar 

  • Anderson LJ, Longnecker R (2008) An auto-regulatory loop for EBV LMP2A involves activation of Notch. Virology 371(2):257–266 Epub 2007/11/06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anderton JA, Bose S, Vockerodt M, Vrzalikova K, Wei W, Kuo M et al (2011) The H3K27me3 demethylase, KDM6B, is induced by Epstein-Barr virus and over-expressed in Hodgkin’s lymphoma. Oncogene 30(17):2037–2043 Epub 2011/01/19

    Article  CAS  PubMed  Google Scholar 

  • Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372:311–319 Epub 2014/12/09

    Google Scholar 

  • Armstrong AA, Alexander FE, Cartwright R, Angus B, Krajewski AS, Wright DH et al (1998) Epstein-Barr virus and Hodgkin’s disease: further evidence for the three disease hypothesis. Leukemia 12(8):1272–1276 Epub 1998/08/11

    Article  CAS  PubMed  Google Scholar 

  • Bargou RC, Leng C, Krappmann D, Emmerich F, Mapara MY, Bommert K et al (1996) High-level nuclear NF-kappa B and Oct-2 is a common feature of cultured Hodgkin/Reed-Sternberg cells. Blood 87(10):4340–4347

    CAS  PubMed  Google Scholar 

  • Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W et al (1997) Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest 100(12):2961–2969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barth TF, Martin-Subero JI, Joos S, Menz CK, Hasel C, Mechtersheimer G et al (2003) Gains of 2p involving the REL locus correlate with nuclear c-Rel protein accumulation in neoplastic cells of classical Hodgkin lymphoma. Blood 101(9):3681–3686 Epub 2003/01/04

    Article  CAS  PubMed  Google Scholar 

  • Baumforth KR, Birgersdotter A, Reynolds GM, Wei W, Kapatai G, Flavell JR et al (2008) Expression of the Epstein-Barr virus-encoded Epstein-Barr virus nuclear antigen 1 in Hodgkin’s lymphoma cells mediates Up-regulation of CCL20 and the migration of regulatory T cells. Am J Pathol 173(1):195–204 Epub 2008/05/27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bechtel D, Kurth J, Unkel C, Kuppers R (2005) Transformation of BCR-deficient germinal-center B cells by EBV supports a major role of the virus in the pathogenesis of Hodgkin and posttransplantation lymphomas. Blood 106(13):4345–4350

    Article  CAS  PubMed  Google Scholar 

  • Biggar RJ, Jaffe ES, Goedert JJ, Chaturvedi A, Pfeiffer R, Engels EA (2006) Hodgkin lymphoma and immunodeficiency in persons with HIV/AIDS. Blood 108(12):3786–3791 Epub 2006/08/19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bohle V, Doring C, Hansmann ML, Kuppers R (2013) Role of early B-cell factor 1 (EBF1) in Hodgkin lymphoma. Leukemia 27(3):671–679 Epub 2012/11/24

    Article  CAS  PubMed  Google Scholar 

  • Bohlius J, Schmidlin K, Boue F, Fatkenheuer G, May M, Caro-Murillo AM et al (2011) HIV-1-related Hodgkin lymphoma in the era of combination antiretroviral therapy: incidence and evolution of CD4(+) T-cell lymphocytes. Blood 117(23):6100–6108 Epub 2011/03/04

    Article  CAS  PubMed  Google Scholar 

  • Brauninger A, Schmitz R, Bechtel D, Renne C, Hansmann ML, Kuppers R (2006) Molecular biology of Hodgkin’s and Reed/Sternberg cells in Hodgkin’s lymphoma. Int J Cancer 118(8):1853–1861

    Article  PubMed  CAS  Google Scholar 

  • Buri C, Korner M, Scharli P, Cefai D, Uguccioni M, Mueller C et al (2001) CC chemokines and the receptors CCR3 and CCR5 are differentially expressed in the nonneoplastic leukocytic infiltrates of Hodgkin disease. Blood 97(6):1543–1548 Epub 2001/03/10

    Article  CAS  PubMed  Google Scholar 

  • Cabannes E, Khan G, Aillet F, Jarrett RF, Hay RT (1999) Mutations in the IkBa gene in Hodgkin’s disease suggest a tumour suppressor role for IkappaBalpha. Oncogene 18(20):3063–3070 Epub 1999/05/26

    Article  CAS  PubMed  Google Scholar 

  • Cader FZ, Vockerodt M, Bose S, Nagy E, Brundler MA, Kearns P et al (2013) The EBV oncogene LMP1 protects lymphoma cells from cell death through the collagen-mediated activation of DDR1. Blood 122(26):4237–4245 Epub 2013/10/19

    Article  CAS  PubMed  Google Scholar 

  • Caldwell RG, Wilson JB, Anderson SJ, Longnecker R (1998) Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9(3):405–411 Epub 1998/10/13

    Article  CAS  PubMed  Google Scholar 

  • Carbone A, Gloghini A, Gattei V, Aldinucci D, Degan M, De Paoli P et al (1995a) Expression of functional CD40 antigen on Reed-Sternberg cells and Hodgkin’s disease cell lines. Blood 85(3):780–789 Epub 1995/02/01

    CAS  PubMed  Google Scholar 

  • Carbone A, Gloghini A, Gruss HJ, Pinto A (1995b) CD40 ligand is constitutively expressed in a subset of T cell lymphomas and on the microenvironmental reactive T cells of follicular lymphomas and Hodgkin’s disease. Am J Pathol 147(4):912–922 Epub 1995/10/01

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cattaruzza L, Gloghini A, Olivo K, Di Francia R, Lorenzon D, De Filippi R et al (2009) Functional coexpression of Interleukin (IL)-7 and its receptor (IL-7R) on Hodgkin and Reed-Sternberg cells: involvement of IL-7 in tumor cell growth and microenvironmental interactions of Hodgkin’s lymphoma. Int J Cancer 125(5):1092–1101 Epub 2009/04/25

    Article  CAS  PubMed  Google Scholar 

  • Chaganti S, Bell AI, Pastor NB, Milner AE, Drayson M, Gordon J et al (2005) Epstein-Barr virus infection in vitro can rescue germinal center B cells with inactivated immunoglobulin genes. Blood 106(13):4249–4252

    Article  CAS  PubMed  Google Scholar 

  • Chang KL, Albujar PF, Chen YY, Johnson RM, Weiss LM (1993) High prevalence of Epstein-Barr virus in the Reed-Sternberg cells of Hodgkin’s disease occurring in Peru. Blood 81:496

    CAS  PubMed  Google Scholar 

  • Chiu A, Xu W, He B, Dillon SR, Gross JA, Sievers E et al (2007) Hodgkin lymphoma cells express TACI and BCMA receptors and generate survival and proliferation signals in response to BAFF and APRIL. Blood 109(2):729–739 Epub 2006/09/09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cozen W, Timofeeva MN, Li D, Diepstra A, Hazelett D, Delahaye-Sourdeix M et al (2014) A meta-analysis of Hodgkin lymphoma reveals 19p13.3 TCF3 as a novel susceptibility locus. Nat Commun 5:3856 Epub 2014/06/13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crump C, Sundquist K, Sieh W, Winkleby MA, Sundquist J (2012a) Perinatal and family risk factors for Hodgkin lymphoma in childhood through young adulthood. Am J Epidemiol 176(12):1147–1158 Epub 2012/11/23

    Article  PubMed Central  PubMed  Google Scholar 

  • Crump C, Sundquist K, Sieh W, Winkleby MA, Sundquist J (2012b) Perinatal and family risk factors for non-Hodgkin lymphoma in early life: a Swedish national cohort study. J Natl Cancer Inst 104(12):923–930 Epub 2012/05/25

    Article  PubMed Central  PubMed  Google Scholar 

  • Deacon EM, Pallesen G, Niedobitek G, Crocker J, Brooks L, Rickinson AB et al (1993) Epstein-Barr virus and Hodgkin’s disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med 177(2):339–349

    Article  CAS  PubMed  Google Scholar 

  • Diepstra A, Niens M, Vellenga E, van Imhoff GW, Nolte IM, Schaapveld M et al (2005) Association with HLA class I in Epstein-Barr-virus-positive and with HLA class III in Epstein-Barr-virus-negative Hodgkin’s lymphoma. Lancet 365(9478):2216–2224 Epub 2005/06/28

    Article  CAS  PubMed  Google Scholar 

  • Doerr JR, Malone CS, Fike FM, Gordon MS, Soghomonian SV, Thomas RK et al (2005) Patterned CpG methylation of silenced B cell gene promoters in classical Hodgkin lymphoma-derived and primary effusion lymphoma cell lines. J Mol Biol 350(4):631–640 Epub 2005/06/22

    Article  CAS  PubMed  Google Scholar 

  • D’Souza BN, Edelstein LC, Pegman PM, Smith SM, Loughran ST, Clarke A et al (2004) Nuclear factor kappa B-dependent activation of the antiapoptotic bfl-1 gene by the Epstein-Barr virus latent membrane protein 1 and activated CD40 receptor. J Virol 78(4):1800–1816 Epub 2004/01/30

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dutton A, O’Neil JD, Milner AE, Reynolds GM, Starczynski J, Crocker J et al (2004) Expression of the cellular FLICE-inhibitory protein (c-FLIP) protects Hodgkin’s lymphoma cells from autonomous Fas-mediated death. Proc Natl Acad Sci USA 101(17):6611–6616 Epub 2004/04/21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dutton A, Reynolds GM, Dawson CW, Young LS, Murray PG (2005) Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin’s lymphoma cells through a mechanism involving Akt kinase and mTOR. J Pathol 205(4):498–506 Epub 2005/02/17

    Article  CAS  PubMed  Google Scholar 

  • Dutton A, Woodman CB, Chukwuma MB, Last JI, Wei W, Vockerodt M et al (2007) Bmi-1 is induced by the Epstein-Barr virus oncogene LMP1 and regulates the expression of viral target genes in Hodgkin lymphoma cells. Blood 109(6):2597–2603 Epub 2006/12/07

    Article  CAS  PubMed  Google Scholar 

  • Eliopoulos AG, Gallagher NJ, Blake SM, Dawson CW, Young LS (1999) Activation of the p38 mitogen-activated protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J Biol Chem 274(23):16085–16096 Epub 1999/05/29

    Article  CAS  PubMed  Google Scholar 

  • Emmerich F, Meiser M, Hummel M, Demel G, Foss HD, Jundt F et al (1999) Overexpression of I kappa B alpha without inhibition of NF-kappaB activity and mutations in the I kappa B alpha gene in Reed-Sternberg cells. Blood 94(9):3129–3134

    CAS  PubMed  Google Scholar 

  • Emmerich F, Theurich S, Hummel M, Haeffker A, Vry MS, Dohner K et al (2003) Inactivating I kappa B epsilon mutations in Hodgkin/Reed-Sternberg cells. J Pathol 201(3):413–420 Epub 2003/11/05

    Article  CAS  PubMed  Google Scholar 

  • Farrell K, Jarrett RF (2011) The molecular pathogenesis of Hodgkin lymphoma. Histopathology 58(1):15–25 Epub 2011/01/26

    Article  PubMed  Google Scholar 

  • Fischer M, Juremalm M, Olsson N, Backlin C, Sundstrom C, Nilsson K et al (2003) Expression of CCL5/RANTES by Hodgkin and Reed-Sternberg cells and its possible role in the recruitment of mast cells into lymphomatous tissue. Int J Cancer 107(2):197–201 Epub 2003/09/02

    Article  CAS  PubMed  Google Scholar 

  • Fiumara P, Snell V, Li Y, Mukhopadhyay A, Younes M, Gillenwater AM et al (2001) Functional expression of receptor activator of nuclear factor kappaB in Hodgkin disease cell lines. Blood 98(9):2784–2790 Epub 2001/10/25

    Article  CAS  PubMed  Google Scholar 

  • Flavell KJ, Biddulph JP, Powell JE, Parkes SE, Redfern D, Weinreb M et al (2001) South Asian ethnicity and material deprivation increase the risk of Epstein-Barr virus infection in childhood Hodgkin’s disease. Br J Cancer 85(3):350–356 Epub 2001/08/07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flavell JR, Baumforth KR, Wood VH, Davies GL, Wei W, Reynolds GM et al (2008) Down-regulation of the TGF-beta target gene, PTPRK, by the Epstein-Barr virus encoded EBNA1 contributes to the growth and survival of Hodgkin lymphoma cells. Blood 111(1):292–301 Epub 2007/08/28

    Article  CAS  PubMed  Google Scholar 

  • Foss HD, Herbst H, Gottstein S, Demel G, Araujo I, Stein H (1996) Interleukin-8 in Hodgkin’s disease. Preferential expression by reactive cells and association with neutrophil density. Am J Pathol 148(4):1229–1236 Epub 1996/04/01

    PubMed Central  CAS  PubMed  Google Scholar 

  • Frappier L (2012) Contributions of Epstein-Barr nuclear antigen 1 (EBNA1) to cell immortalization and survival. Viruses 4(9):1537–1547 Epub 2012/11/22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fukuda M, Longnecker R (2004) Latent membrane protein 2A inhibits transforming growth factor-beta 1-induced apoptosis through the phosphatidylinositol 3-kinase/Akt pathway. J Virol 78(4):1697–1705 Epub 2004/01/30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gandhi MK, Moll G, Smith C, Dua U, Lambley E, Ramuz O et al (2007) Galectin-1 mediated suppression of Epstein-Barr virus specific T-cell immunity in classic Hodgkin lymphoma. Blood 110(4):1326–1329 Epub 2007/04/18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gires O, Kohlhuber F, Kilger E, Baumann M, Kieser A, Kaiser C et al (1999) Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. EMBO J 18(11):3064–3073 Epub 1999/06/05

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Glaser SL, Lin RJ, Stewart SL, Ambinder RF, Jarrett RF, Brousset P et al (1997) Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. Int J Cancer 70(4):375–382 Epub 1997/02/07

    Article  CAS  PubMed  Google Scholar 

  • Glaser SL, Clarke CA, Gulley ML, Craig FE, DiGiuseppe JA, Dorfman RF et al (2003) Population-based patterns of human immunodeficiency virus-related Hodgkin lymphoma in the Greater San Francisco Bay Area, 1988–1998. Cancer 98(2):300–309 Epub 2003/07/23

    Article  PubMed  Google Scholar 

  • Gotti D, Danesi M, Calabresi A, Ferraresi A, Albini L, Donato F et al (2013) Clinical characteristics, incidence, and risk factors of HIV-related Hodgkin lymphoma in the era of combination antiretroviral therapy. Aids Patient Care STDS 27(5):259–265 Epub 2013/04/23

    Article  PubMed  Google Scholar 

  • Grasser FA, Murray PG, Kremmer E, Klein K, Remberger K, Feiden W et al (1994) Monoclonal antibodies directed against the Epstein-Barr virus-encoded nuclear antigen 1 (EBNA1): immunohistologic detection of EBNA1 in the malignant cells of Hodgkin’s disease. Blood 84(11):3792–3798

    CAS  PubMed  Google Scholar 

  • Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O’Donnell E et al (2010) Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116(17):3268–3277 Epub 2010/07/16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Green MR, Rodig S, Juszczynski P, Ouyang J, Sinha P, O’Donnell E et al (2012) Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res 18(6):1611–1618 Epub 2012/01/25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gunawardana J, Chan FC, Telenius A, Woolcock B, Kridel R, Tan KL et al (2014) Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma. Nat Genet 46(4):329–335 Epub 2014/02/18

    Article  CAS  PubMed  Google Scholar 

  • Hanamoto H, Nakayama T, Miyazato H, Takegawa S, Hieshima K, Tatsumi Y et al (2004) Expression of CCL28 by Reed-Sternberg cells defines a major subtype of classical Hodgkin’s disease with frequent infiltration of eosinophils and/or plasma cells. Am J Pathol 164(3):997–1006 Epub 2004/02/26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henderson S, Rowe M, Gregory C, Croom-Carter D, Wang F, Longnecker R et al (1991) Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell 65(7):1107–1115 Epub 1991/06/28

    Article  CAS  PubMed  Google Scholar 

  • Hertel CB, Zhou XG, Hamilton-Dutoit SJ, Junker S (2002) Loss of B cell identity correlates with loss of B cell-specific transcription factors in Hodgkin/Reed-Sternberg cells of classical Hodgkin lymphoma. Oncogene 21(32):4908–4920 Epub 2002/07/16

    Article  CAS  PubMed  Google Scholar 

  • Hinz M, Lemke P, Anagnostopoulos I, Hacker C, Krappmann D, Mathas S et al (2002) Nuclear factor kappaB-dependent gene expression profiling of Hodgkin’s disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J Exp Med 196(5):605–617 Epub 2002/09/05

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hjalgrim H, Askling J, Sorensen P, Madsen M, Rosdahl N, Storm HH et al (2000) Risk of Hodgkin’s disease and other cancers after infectious mononucleosis. J Natl Cancer Inst 92:1522

    Google Scholar 

  • Hjalgrim H, Smedby KE, Rostgaard K, Molin D, Hamilton-Dutoit S, Chang ET et al (2007) Infectious mononucleosis, childhood social environment, and risk of Hodgkin lymphoma. Cancer Res 67(5):2382–2388 Epub 2007/03/03

    Article  CAS  PubMed  Google Scholar 

  • Hjalgrim H, Rostgaard K, Johnson PC, Lake A, Shield L, Little AM et al (2010) HLA-A alleles and infectious mononucleosis suggest a critical role for cytotoxic T-cell response in EBV-related Hodgkin lymphoma. Proc Natl Acad Sci USA 107(14):6400–6405 Epub 2010/03/24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holowaty MN, Zeghouf M, Wu H, Tellam J, Athanasopoulos V, Greenblatt J et al (2003) Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. J Biol Chem 278(32):29987–29994 Epub 2003/06/05

    Article  CAS  PubMed  Google Scholar 

  • Horie R, Watanabe T, Morishita Y, Ito K, Ishida T, Kanegae Y et al (2002) Ligand-independent signaling by overexpressed CD30 drives NF-kappaB activation in Hodgkin-Reed-Sternberg cells. Oncogene 21(16):2493–2503 Epub 2002/04/24

    Article  CAS  PubMed  Google Scholar 

  • Huen DS, Henderson SA, Croom-Carter D, Rowe M (1995) The Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene 10(3):549–560 Epub 1995/02/02

    CAS  PubMed  Google Scholar 

  • Huppmann AR, Nicolae A, Slack GW, Pittaluga S, Davies-Hill T, Ferry JA et al (2014) EBV may be expressed in the LP cells of nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) in both children and adults. Am J Surg Pathol 38(3):316–324 Epub 2014/02/15

    Article  PubMed Central  PubMed  Google Scholar 

  • Ishida T, Ishii T, Inagaki A, Yano H, Komatsu H, Iida S et al (2006) Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res 66(11):5716–5722 Epub 2006/06/03

    Article  CAS  PubMed  Google Scholar 

  • Izban KF, Ergin M, Huang Q, Qin JZ, Martinez RL, Schnitzer B et al (2001) Characterization of NF-kappaB expression in Hodgkin’s disease: inhibition of constitutively expressed NF-kappaB results in spontaneous caspase-independent apoptosis in Hodgkin and Reed-Sternberg cells. Mod Pathol 14(4):297–310 Epub 2001/04/13

    Article  CAS  PubMed  Google Scholar 

  • Jarrett RF, Gallagher A, Jones DB, Alexander FE, Krajewski AS, Kelsey A et al (1991) Detection of Epstein-Barr virus genomes in Hodgkin’s disease: relation to age. J Clin Pathol 44(10):844–848 Epub 1991/10/01

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joos S, Kupper M, Ohl S, von Bonin F, Mechtersheimer G, Bentz M et al (2000) Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res 60(3):549–552 Epub 2000/02/17

    CAS  PubMed  Google Scholar 

  • Joos S, Granzow M, Holtgreve-Grez H, Siebert R, Harder L, Martin-Subero JI et al (2003) Hodgkin’s lymphoma cell lines are characterized by frequent aberrations on chromosomes 2p and 9p including REL and JAK2. Int J Cancer 103(4):489–495 Epub 2002/12/13

    Article  CAS  PubMed  Google Scholar 

  • Jundt F, Anagnostopoulos I, Bommert K, Emmerich F, Muller G, Foss HD et al (1999) Hodgkin/Reed-Sternberg cells induce fibroblasts to secrete eotaxin, a potent chemoattractant for T cells and eosinophils. Blood 94(6):2065–2071 Epub 1999/09/09

    CAS  PubMed  Google Scholar 

  • Jundt F, Kley K, Anagnostopoulos I, Schulze Probsting K, Greiner A, Mathas S et al (2002a) Loss of PU.1 expression is associated with defective immunoglobulin transcription in Hodgkin and Reed-Sternberg cells of classical Hodgkin disease. Blood 99(8):3060–3062 Epub 2002/04/04

    Article  CAS  PubMed  Google Scholar 

  • Jundt F, Anagnostopoulos I, Forster R, Mathas S, Stein H, Dorken B (2002b) Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood 99(9):3398–3403 Epub 2002/04/20

    Article  CAS  PubMed  Google Scholar 

  • Jundt F, Acikgoz O, Kwon SH, Schwarzer R, Anagnostopoulos I, Wiesner B et al (2008) Aberrant expression of Notch1 interferes with the B-lymphoid phenotype of neoplastic B cells in classical Hodgkin lymphoma. Leukemia 22(8):1587–1594 Epub 2008/05/02

    Article  CAS  PubMed  Google Scholar 

  • Jungnickel B, Staratschek-Jox A, Brauninger A, Spieker T, Wolf J, Diehl V et al (2000) Clonal deleterious mutations in the IkappaBalpha gene in the malignant cells in Hodgkin’s lymphoma. J Exp Med 191(2):395–402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Juszczynski P, Ouyang J, Monti S, Rodig SJ, Takeyama K, Abramson J et al (2007) The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci USA 104(32):13134–13139 Epub 2007/08/03

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamper P, Bendix K, Hamilton-Dutoit S, Honore B, Nyengaard JR, d’Amore F (2011) Tumor-infiltrating macrophages correlate with adverse prognosis and Epstein-Barr virus status in classical Hodgkin’s lymphoma. Haematologica 96(2):269–276 Epub 2010/11/13

    Article  PubMed Central  PubMed  Google Scholar 

  • Kanzler H, Kuppers R, Hansmann ML, Rajewsky K (1996) Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med 184(4):1495–1505

    Article  CAS  PubMed  Google Scholar 

  • Kapp U, Yeh WC, Patterson B, Elia AJ, Kagi D, Ho A et al (1999) Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed-Sternberg cells. J Exp Med 189(12):1939–1946 Epub 1999/06/22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khanna R, Burrows SR, Nicholls J, Poulsen LM (1998) Identification of cytotoxic T cell epitopes within Epstein-Barr virus (EBV) oncogene latent membrane protein 1 (LMP1): evidence for HLA-A2 supertype-restricted immune recognition of EBV-infected cells by LMP1-specific cytotoxic T lymphocytes. Eur J Immunol 28:451

    Article  CAS  PubMed  Google Scholar 

  • Kieser A, Kilger E, Gires O, Ueffing M, Kolch W, Hammerschmidt W (1997) Epstein-Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. EMBO J 16(21):6478–6485 Epub 1997/11/14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kis LL, Takahara M, Nagy N, Klein G, Klein E (2006) IL-10 can induce the expression of EBV-encoded latent membrane protein-1 (LMP-1) in the absence of EBNA-2 in B lymphocytes and in Burkitt lymphoma- and NK lymphoma-derived cell lines. Blood 107(7):2928–2935 Epub 2005/12/08

    Article  CAS  PubMed  Google Scholar 

  • Kis LL, Salamon D, Persson EK, Nagy N, Scheeren FA, Spits H et al (2010) IL-21 imposes a type II EBV gene expression on type III and type I B cells by the repression of C- and activation of LMP-1-promoter. Proc Natl Acad Sci USA 107(2):872–877 Epub 2010/01/19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kis LL, Gerasimcik N, Salamon D, Persson EK, Nagy N, Klein G et al (2011) STAT6 signaling pathway activated by the cytokines IL-4 and IL-13 induces expression of the Epstein-Barr virus-encoded protein LMP-1 in absence of EBNA-2: implications for the type II EBV latent gene expression in Hodgkin lymphoma. Blood 117(1):165–174 Epub 2010/09/30

    Article  CAS  PubMed  Google Scholar 

  • Kochert K, Ullrich K, Kreher S, Aster JC, Kitagawa M, Johrens K et al (2011) High-level expression of Mastermind-like 2 contributes to aberrant activation of the NOTCH signaling pathway in human lymphomas. Oncogene 30(15):1831–1840 Epub 2010/12/02

    Article  CAS  PubMed  Google Scholar 

  • Kowalkowski MA, Mims MP, Amiran ES, Lulla P, Chiao EY (2013) Effect of immune reconstitution on the incidence of HIV-related Hodgkin lymphoma. PLoS ONE 8(10):e77409. Epub 2013/10/08

    Google Scholar 

  • Kreher S, Bouhlel MA, Cauchy P, Lamprecht B, Li S, Grau M et al (2014) Mapping of transcription factor motifs in active chromatin identifies IRF5 as key regulator in classical Hodgkin lymphoma. Proc Natl Acad Sci USA 111(42):E4513–E4522 Epub 2014/10/08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kube D, Holtick U, Vockerodt M, Ahmadi T, Haier B, Behrmann I et al (2001) STAT3 is constitutively activated in Hodgkin cell lines. Blood 98(3):762–770 Epub 2001/07/27

    Article  CAS  PubMed  Google Scholar 

  • Kuppers R (2009) The biology of Hodgkin’s lymphoma. Nat Rev Cancer 9(1):15–27 Epub 2008/12/17

    Article  PubMed  CAS  Google Scholar 

  • Kuppers R, Rajewsky K, Zhao M, Simons G, Laumann R, Fischer R et al (1994) Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad Sci USA 91(23):10962–10966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuppers R, Klein U, Schwering I, Distler V, Brauninger A, Cattoretti G et al (2003) Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling. J Clin Invest 111(4):529–537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kushekhar K, van den Berg A, Nolte I, Hepkema B, Visser L, Diepstra A (2014) Genetic associations in classical hodgkin lymphoma: a systematic review and insights into susceptibility mechanisms. Cancer Epidemiol Biomarkers Prev 23(12):2737–2747 Epub 2014/09/11

    Article  CAS  PubMed  Google Scholar 

  • Lake A, Shield LA, Cordano P, Chui DT, Osborne J, Crae S et al (2009) Mutations of NFKBIA, encoding IkappaB alpha, are a recurrent finding in classical Hodgkin lymphoma but are not a unifying feature of non-EBV-associated cases. Int J Cancer 125(6):1334–1342 Epub 2009/06/10

    Article  CAS  PubMed  Google Scholar 

  • Lam N, Sugden B (2003) CD40 and its viral mimic, LMP1: similar means to different ends. Cell Signal 15(1):9–16 Epub 2002/10/29

    Article  CAS  PubMed  Google Scholar 

  • Lambert SL, Martinez OM (2007) Latent membrane protein 1 of EBV activates phosphatidylinositol 3-kinase to induce production of IL-10. J Immunol 179(12):8225–8234 Epub 2007/12/07

    Article  CAS  PubMed  Google Scholar 

  • Lee SP, Thomas WA, Murray RJ, Khanim F, Kaur S, Young LS et al (1993) HLA A2.1-restricted cytotoxic T cells recognizing a range of Epstein-Barr virus isolates through a defined epitope in latent membrane protein LMP2. J Virol 67(12):7428–7435

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SP, Constandinou CM, Thomas WA, Croom-Carter D, Blake NW, Murray PG et al (1998) Antigen presenting phenotype of Hodgkin Reed-Sternberg cells: analysis of the HLA class I processing pathway and the effects of interleukin-10 on epstein-barr virus-specific cytotoxic T-cell recognition. Blood 92(3):1020–1030 Epub 1998/07/29

    CAS  PubMed  Google Scholar 

  • Leonard S, Wei W, Anderton J, Vockerodt M, Rowe M, Murray PG et al (2011) Epigenetic and transcriptional changes which follow Epstein-Barr virus infection of germinal center B cells and their relevance to the pathogenesis of Hodgkin’s lymphoma. J Virol 85(18):9568–9577 Epub 2011/07/15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leonard S, Gordon N, Smith N, Rowe M, Murray PG, Woodman CB (2012) Arginine Methyltransferases are regulated by Epstein-Barr Virus in B Cells and are differentially expressed in Hodgkin’s lymphoma. Pathogens 1(1):52–64 Epub 2012/01/01

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levine PH, Ablashi DV, Berard CW, Carbone PP, Waggoner DE, Malan L (1971) Elevated antibody titers to Epstein-Barr virus in Hodgkin’s disease. Cancer 27(2):416–421 Epub 1971/02/01

    Article  CAS  PubMed  Google Scholar 

  • Lin KI, Tunyaplin C, Calame K (2003) Transcriptional regulatory cascades controlling plasma cell differentiation. Immunol Rev 194:19–28 Epub 2003/07/09

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Abdul Razak FR, Terpstra M, Chan FC, Saber A, Nijland M et al (2014a) The mutational landscape of Hodgkin lymphoma cell lines determined by whole-exome sequencing. Leukemia 28(11):2248–2251 Epub 2014/06/21

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Sattarzadeh A, Diepstra A, Visser L, van den Berg A (2014b) The microenvironment in classical Hodgkin lymphoma: an actively shaped and essential tumor component. Semin Cancer Biol 24:15–22 Epub 2013/07/23

    Article  CAS  PubMed  Google Scholar 

  • Longnecker R, Kieff E (1990) A second Epstein-Barr virus membrane protein (LMP2) is expressed in latent infection and colocalizes with LMP1. J Virol 64(5):2319–2326 Epub 1990/05/01

    PubMed Central  CAS  PubMed  Google Scholar 

  • Longnecker D, Kieff E, Cohen J (2013) Epstein-Barr Virus. In: Knipe DM, Howley PM (eds) Field’s virology, 6th edn. Lippincott William and Wilkins, p 1898–1959

    Google Scholar 

  • Lu J, Murakami M, Verma SC, Cai Q, Haldar S, Kaul R et al (2011) Epstein-Barr Virus nuclear antigen 1 (EBNA1) confers resistance to apoptosis in EBV-positive B-lymphoma cells through up-regulation of survivin. Virology 410(1):64–75 Epub 2010/11/26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mack TM, Cozen W, Shibata DK, Weiss LM, Nathwani BN, Hernandez AM et al (1995) Concordance for Hodgkin’s disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease. N Engl J Med 332(7):413–418 Epub 1995/02/16

    Article  CAS  PubMed  Google Scholar 

  • Mancao C, Altmann M, Jungnickel B, Hammerschmidt W (2005) Rescue of “crippled” germinal center B cells from apoptosis by Epstein-Barr virus. Blood 106(13):4339–4344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marafioti T, Hummel M, Foss HD, Laumen H, Korbjuhn P, Anagnostopoulos I et al (2000) Hodgkin and reed-sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood 95(4):1443–1450 Epub 2000/02/09

    CAS  PubMed  Google Scholar 

  • Marshall NA, Culligan DJ, Tighe J, Johnston PW, Barker RN, Vickers MA (2007) The relationships between Epstein-Barr virus latent membrane protein 1 and regulatory T cells in Hodgkin’s lymphoma. Exp Hematol 35(4):596–604 Epub 2007/03/24

    Article  CAS  PubMed  Google Scholar 

  • Martin-Subero JI, Gesk S, Harder L, Sonoki T, Tucker PW, Schlegelberger B et al (2002) Recurrent involvement of the REL and BCL11A loci in classical Hodgkin lymphoma. Blood 99(4):1474–1477 Epub 2002/02/07

    Article  CAS  PubMed  Google Scholar 

  • Martin-Subero JI, Wlodarska I, Bastard C, Picquenot JM, Hoppner J, Giefing M et al (2006) Chromosomal rearrangements involving the BCL3 locus are recurrent in classical Hodgkin and peripheral T-cell lymphoma. Blood 108(1):401–402. author reply 2-3. Epub 2006/06/23

    Google Scholar 

  • Mathas S, Johrens K, Joos S, Lietz A, Hummel F, Janz M et al (2005) Elevated NF-kappaB p50 complex formation and Bcl-3 expression in classical Hodgkin, anaplastic large-cell, and other peripheral T-cell lymphomas. Blood 106(13):4287–4293 Epub 2005/08/27

    Article  CAS  PubMed  Google Scholar 

  • Mathas S, Janz M, Hummel F, Hummel M, Wollert-Wulf B, Lusatis S et al (2006) Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat Immunol 7(2):207–215 Epub 2005/12/22

    Article  CAS  PubMed  Google Scholar 

  • Merchant M, Caldwell RG, Longnecker R (2000) The LMP2A ITAM is essential for providing B cells with development and survival signals in vivo. J Virol 74(19):9115–9124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mueller N, Evans A, Harris NL, Comstock GW, Jellum E, Magnus K et al (1989) Hodgkin’s disease and Epstein-Barr virus. Altered antibody pattern before diagnosis. N Engl J Med 320(11):689–695 Epub 1989/03/16

    Article  CAS  PubMed  Google Scholar 

  • Muenst S, Hoeller S, Dirnhofer S, Tzankov A (2009) Increased programmed death-1+ tumor-infiltrating lymphocytes in classical Hodgkin lymphoma substantiate reduced overall survival. Hum Pathol 40(12):1715–1722 Epub 2009/08/22

    Article  CAS  PubMed  Google Scholar 

  • Murray PG, Young LS, Rowe M, Crocker J (1992) Immunohistochemical demonstration of the Epstein-Barr virus-encoded latent membrane protein in paraffin sections of Hodgkin’s disease. J Pathol 166(1):1–5 Epub 1992/01/01

    Article  CAS  PubMed  Google Scholar 

  • Muschen M, Rajewsky K, Brauninger A, Baur AS, Oudejans JJ, Roers A et al (2000) Rare occurrence of classical Hodgkin’s disease as a T cell lymphoma. J Exp Med 191(2):387–394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakayama T, Hieshima K, Nagakubo D, Sato E, Nakayama M, Kawa K et al (2004) Selective induction of Th2-attracting chemokines CCL17 and CCL22 in human B cells by latent membrane protein 1 of Epstein-Barr virus. J Virol 78(4):1665–1674 Epub 2004/01/30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nie L, Xu M, Vladimirova A, Sun XH (2003) Notch-induced E2A ubiquitination and degradation are controlled by MAP kinase activities. EMBO J 22(21):5780–5792 Epub 2003/11/01

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niedobitek G, Kremmer E, Herbst H, Whitehead L, Dawson CW, Niedobitek E et al (1997) Immunohistochemical detection of the Epstein-Barr virus-encoded latent membrane protein 2A in Hodgkin’s disease and infectious mononucleosis. Blood 90(4):1664–1672

    CAS  PubMed  Google Scholar 

  • Niens M, Jarrett RF, Hepkema B, Nolte IM, Diepstra A, Platteel M et al (2007) HLA-A*02 is associated with a reduced risk and HLA-A*01 with an increased risk of developing EBV+ Hodgkin lymphoma. Blood 110(9):3310–3315 Epub 2007/07/17

    Article  CAS  PubMed  Google Scholar 

  • Nutt SL, Kee BL (2007) The transcriptional regulation of B cell lineage commitment. Immunity 26(6):715–725 Epub 2007/06/22

    Article  CAS  PubMed  Google Scholar 

  • Otto C, Giefing M, Massow A, Vater I, Gesk S, Schlesner M et al (2012) Genetic lesions of the TRAF3 and MAP3K14 genes in classical Hodgkin lymphoma. Br J Haematol 157(6):702–708 Epub 2012/04/04

    Article  CAS  PubMed  Google Scholar 

  • Oudejans JJ, Jiwa NM, Kummer JA, Horstman A, Vos W, Baak JP et al (1996a) Analysis of major histocompatibility complex class I expression on Reed-Sternberg cells in relation to the cytotoxic T-cell response in Epstein-Barr virus-positive and -negative Hodgkin’s disease. Blood 87(9):3844–3851 Epub 1996/05/01

    CAS  PubMed  Google Scholar 

  • Oudejans JJ, Jiwa NM, Kummer JA, Horstman A, Vos W, Baak JPA et al (1996b) Analysis of MHC class I expression on Reed-Sternberg cells in relation to the cytotoxic T-cell response in Epstein-Barr virus positive and negative Hodgkin’s disease. Blood 87:3844

    CAS  PubMed  Google Scholar 

  • Oudejans JJ, Jiwa NM, Kummer JA, Ossenkoppele GJ, van Heerde P, Baars JW et al (1997) Activated cytotoxic T cells as prognostic marker in Hodgkin’s disease. Blood 89(4):1376–1382 Epub 1997/02/15

    CAS  PubMed  Google Scholar 

  • Oyama T, Ichimura K, Suzuki R, Suzumiya J, Ohshima K, Yatabe Y et al (2003) Senile EBV+ B-cell lymphoproliferative disorders: a clinicopathologic study of 22 patients. Am J Surg Pathol 27(1):16–26 Epub 2002/12/28

    Article  PubMed  Google Scholar 

  • Oyama T, Yamamoto K, Asano N, Oshiro A, Suzuki R, Kagami Y et al (2007) Age-related EBV-associated B-cell lymphoproliferative disorders constitute a distinct clinicopathologic group: a study of 96 patients. Clin Cancer Res 13(17):5124–5132 Epub 2007/09/06

    Article  CAS  PubMed  Google Scholar 

  • Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL et al (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA 107(14):6328–6333 Epub 2010/03/23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pinto A, Aldinucci D, Gloghini A, Zagonel V, Degan M, Perin V et al (1997) The role of eosinophils in the pathobiology of Hodgkin’s disease. Ann Oncol 8(Suppl 2):89–96 Epub 1997/01/01

    Article  PubMed  Google Scholar 

  • Portis T, Longnecker R (2004) Epstein-Barr virus (EBV) LMP2A alters normal transcriptional regulation following B-cell receptor activation. Virology 318(2):524–533 Epub 2004/02/20

    Article  CAS  PubMed  Google Scholar 

  • Portis T, Dyck P, Longnecker R (2003) Epstein-Barr Virus (EBV) LMP2A induces alterations in gene transcription similar to those observed in Reed-Sternberg cells of Hodgkin lymphoma. Blood 102:4166

    Google Scholar 

  • Ranuncolo SM, Pittaluga S, Evbuomwan MO, Jaffe ES, Lewis BA (2012) Hodgkin lymphoma requires stabilized NIK and constitutive RelB expression for survival. Blood 120(18):3756–3763 Epub 2012/09/13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Re D, Muschen M, Ahmadi T, Wickenhauser C, Staratschek-Jox A, Holtick U et al (2001) Oct-2 and Bob-1 deficiency in Hodgkin and Reed Sternberg cells. Cancer Res 61(5):2080–2084 Epub 2001/03/31

    CAS  PubMed  Google Scholar 

  • Reichel J, Chadburn A, Rubinstein PG, Giulino-Roth L, Tam W, Liu Y et al (2015) Flow-sorting and exome sequencing reveals the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood 125:1061–1072 Epub 2014/12/10

    Google Scholar 

  • Renne C, Willenbrock K, Kuppers R, Hansmann ML, Brauninger A (2005) Autocrine- and paracrine-activated receptor tyrosine kinases in classic Hodgkin lymphoma. Blood 105(10):4051–4059 Epub 2005/01/29

    Article  CAS  PubMed  Google Scholar 

  • Renne C, Martin-Subero JI, Eickernjager M, Hansmann ML, Kuppers R, Siebert R et al (2006) Aberrant expression of ID2, a suppressor of B-cell-specific gene expression, in Hodgkin’s lymphoma. Am J Pathol 169(2):655–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Renne C, Hinsch N, Willenbrock K, Fuchs M, Klapper W, Engert A et al (2007) The aberrant coexpression of several receptor tyrosine kinases is largely restricted to EBV-negative cases of classical Hodgkin’s lymphoma. Int J Cancer 120(11):2504–2509 Epub 2007/03/03

    Article  CAS  PubMed  Google Scholar 

  • Reusch JA, Nawandar DM, Wright KL, Kenney SC, Mertz JE (2015) Cellular differentiation regulator BLIMP1 induces Epstein-Barr virus lytic reactivation in epithelial and B cells by activating transcription from both the R and Z promoters. J Virol 89:731–1743 Epub 2014/11/21

    Google Scholar 

  • Rickinson AB, Moss DJ (1997) Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol 15:405–431 Epub 1997/01/01

    Article  CAS  PubMed  Google Scholar 

  • Rowe M, Raithatha S, Shannon-Lowe C (2014) Counteracting effects of cellular Notch and Epstein-Barr virus EBNA2: implications for stromal effects on virus-host interactions. J Virol 88(20):12065–12076 Epub 2014/08/15

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schmitz R, Hansmann ML, Bohle V, Martin-Subero JI, Hartmann S, Mechtersheimer G et al (2009) TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med 206(5):981–989 Epub 2009/04/22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M et al (2012) Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490(7418):116–120 Epub 2012/08/14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwarzer R, Dorken B, Jundt F (2012) Notch is an essential upstream regulator of NF-kappaB and is relevant for survival of Hodgkin and Reed-Sternberg cells. Leukemia 26(4):806–813 Epub 2011/09/29

    Article  CAS  PubMed  Google Scholar 

  • Schwering I, Brauninger A, Klein U, Jungnickel B, Tinguely M, Diehl V et al (2003) Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 101(4):1505–1512

    Article  CAS  PubMed  Google Scholar 

  • Seitz V, Hummel M, Marafioti T, Anagnostopoulos I, Assaf C, Stein H (2000) Detection of clonal T-cell receptor gamma-chain gene rearrangements in Reed-Sternberg cells of classic Hodgkin disease. Blood 95(10):3020–3024

    CAS  PubMed  Google Scholar 

  • Skinnider BF, Mak TW (2002) The role of cytokines in classical Hodgkin lymphoma. Blood 99(12):4283–4297 Epub 2002/05/31

    Article  CAS  PubMed  Google Scholar 

  • Skinnider BF, Elia AJ, Gascoyne RD, Trumper LH, von Bonin F, Kapp U et al (2001) Interleukin 13 and interleukin 13 receptor are frequently expressed by Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 97(1):250–255 Epub 2001/01/03

    Article  CAS  PubMed  Google Scholar 

  • Skinnider BF, Elia AJ, Gascoyne RD, Patterson B, Trumper L, Kapp U et al (2002) Signal transducer and activator of transcription 6 is frequently activated in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 99(2):618–626 Epub 2002/01/10

    Article  CAS  PubMed  Google Scholar 

  • Smith DW, Sugden B (2013) Potential cellular functions of Epstein-Barr Nuclear Antigen 1 (EBNA1) of Epstein-Barr Virus. Viruses 5(1):226–240. Epub 2013/01/18

    Google Scholar 

  • Smith EM, Akerblad P, Kadesch T, Axelson H, Sigvardsson M (2005) Inhibition of EBF function by active Notch signaling reveals a novel regulatory pathway in early B-cell development. Blood 106(6):1995–2001 Epub 2005/05/28

    Article  CAS  PubMed  Google Scholar 

  • Steidl C, Shah SP, Woolcock BW, Rui L, Kawahara M, Farinha P et al (2011) MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471(7338):377–381 Epub 2011/03/04

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steidl C, Diepstra A, Lee T, Chan FC, Farinha P, Tan K et al (2012) Gene expression profiling of microdissected Hodgkin Reed-Sternberg cells correlates with treatment outcome in classical Hodgkin lymphoma. Blood 120(17):3530–3540 Epub 2012/09/08

    Article  CAS  PubMed  Google Scholar 

  • Stein H, Marafioti T, Foss HD, Laumen H, Hummel M, Anagnostopoulos I et al (2001) Down-regulation of BOB.1/OBF.1 and Oct2 in classical Hodgkin disease but not in lymphocyte predominant Hodgkin disease correlates with immunoglobulin transcription. Blood 97(2):496–501 Epub 2001/01/12

    Article  CAS  PubMed  Google Scholar 

  • Swart R, Ruf IK, Sample J, Longnecker R (2000) Latent membrane protein 2A-mediated effects on the phosphatidylinositol 3-Kinase/Akt pathway. J Virol 74(22):10838–10845 Epub 2000/10/24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swerdlow SH, Campo E, Harris NL, Jaffe E, Pileri S, Stein H et al (2008) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. IARC Press, Lyon

    Google Scholar 

  • Theil J, Laumen H, Marafioti T, Hummel M, Lenz G, Wirth T et al (2001) Defective octamer-dependent transcription is responsible for silenced immunoglobulin transcription in Reed-Sternberg cells. Blood 97(10):3191–3196 Epub 2001/05/09

    Article  CAS  PubMed  Google Scholar 

  • Tiacci E, Doring C, Brune V, van Noesel CJ, Klapper W, Mechtersheimer G et al (2012) Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood 120(23):4609–4620 Epub 2012/09/08

    Article  CAS  PubMed  Google Scholar 

  • Torlakovic E, Tierens A, Dang HD, Delabie J (2001) The transcription factor PU.1, necessary for B-cell development is expressed in lymphocyte predominance, but not classical Hodgkin’s disease. Am J Pathol 159(5):1807–1814 Epub 2001/11/07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tzankov A, Meier C, Hirschmann P, Went P, Pileri SA, Dirnhofer S (2008) Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin’s lymphoma. Haematologica 93(2):193–200 Epub 2008/01/29

    Article  CAS  PubMed  Google Scholar 

  • Tzankov A, Matter MS, Dirnhofer S (2010) Refined prognostic role of CD68-positive tumor macrophages in the context of the cellular micromilieu of classical Hodgkin lymphoma. Pathobiology 77(6):301–308 Epub 2011/01/27

    Article  CAS  PubMed  Google Scholar 

  • Uccini S, Monardo F, Stoppacciaro A, Gradilone A, Agliano AM, Faggioni A et al (1990) High frequency of Epstein-Barr virus genome detection in Hodgkin’s disease of HIV-positive patients. Int J Cancer 46(4):581–585 Epub 1990/10/15

    Article  CAS  PubMed  Google Scholar 

  • Ushmorov A, Ritz O, Hummel M, Leithauser F, Moller P, Stein H et al (2004) Epigenetic silencing of the immunoglobulin heavy-chain gene in classical Hodgkin lymphoma-derived cell lines contributes to the loss of immunoglobulin expression. Blood 104(10):3326–3334 Epub 2004/07/31

    Article  CAS  PubMed  Google Scholar 

  • van den Berg A, Visser L, Poppema S (1999) High expression of the CC chemokine TARC in Reed-Sternberg cells. A possible explanation for the characteristic T-cell infiltratein Hodgkin’s lymphoma. Am J Pathol 154(6):1685–1691 Epub 1999/06/11

    Article  PubMed Central  PubMed  Google Scholar 

  • Vockerodt M, Soares M, Kanzler H, Kuppers R, Kube D, Hansmann ML et al (1998) Detection of clonal Hodgkin and Reed-Sternberg cells with identical somatically mutated and rearranged VH genes in different biopsies in relapsed Hodgkin’s disease. Blood 92(8):2899–2907 Epub 1998/10/09

    CAS  PubMed  Google Scholar 

  • Vockerodt M, Morgan SL, Kuo M, Wei W, Chukwuma MB, Arrand JR et al (2008) The Epstein-Barr virus oncoprotein, latent membrane protein-1, reprograms germinal centre B cells towards a Hodgkin’s Reed-Sternberg-like phenotype. J Pathol 216(1):83–92 Epub 2008/06/21

    Article  CAS  PubMed  Google Scholar 

  • Vockerodt M, Wei W, Nagy E, Prouzova Z, Schrader A, Kube D et al (2013) Suppression of the LMP2A target gene, EGR-1, protects Hodgkin’s lymphoma cells from entry to the EBV lytic cycle. J Pathol 230(4):399–409 Epub 2013/04/18

    Article  CAS  PubMed  Google Scholar 

  • Vrzalikova K, Vockerodt M, Leonard S, Bell A, Wei W, Schrader A et al (2011) Down-regulation of BLIMP1alpha by the EBV oncogene, LMP-1, disrupts the plasma cell differentiation program and prevents viral replication in B cells: implications for the pathogenesis of EBV-associated B-cell lymphomas. Blood 117(22):5907–5917 Epub 2011/03/18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vrzalikova K, Woodman CB, Murray PG (2012a) BLIMP1alpha, the master regulator of plasma cell differentiation is a tumor supressor gene in B cell lymphomas. Biomed Papers (Medical Faculty of the University Palacky, Olomouc, Czechoslovakia) 156(1):1–6 Epub 2012/05/15

    Article  CAS  Google Scholar 

  • Vrzalikova K, Leonard S, Fan Y, Bell A, Vockerodt M, Flodr P et al (2012b) Hypomethylation and over-expression of the beta isoform of BLIMP1 is Induced by Epstein-Barr virus infection of B Cells; potential implications for the pathogenesis of EBV-associated lymphomas. Pathogens 1(2):83–101 Epub 2012/01/01

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang S, Medeiros LJ, Xu-Monette ZY, Zhang S, O’Malley DP, Orazi A et al (2014) Epstein-Barr virus-positive nodular lymphocyte predominant Hodgkin lymphoma. Ann Diagn Pathol 18(4):203–209 Epub 2014/05/24

    Article  PubMed  Google Scholar 

  • Weinreb M, Day PJR, Niggli F, Green EK, Nyongo AO, Othieno-Abinya NA et al (1996) The consistent association between Epstein-Barr virus and Hodgkin’s disease in children in Kenya. Blood 87:3828

    CAS  PubMed  Google Scholar 

  • Weiss LM, Movahed LA, Warnke RA, Sklar J (1989) Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin’s disease. N Engl J Med 320(8):502–506

    Article  CAS  PubMed  Google Scholar 

  • Weniger MA, Melzner I, Menz CK, Wegener S, Bucur AJ, Dorsch K et al (2006) Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene 25(18):2679–2684 Epub 2006/03/15

    Article  CAS  PubMed  Google Scholar 

  • Wu TC, Mann RB, Charache P, Hayward SD, Staal S, Lambe BC et al (1990) Detection of EBV gene expression in Reed-Sternberg cells of Hodgkin’s disease. Int J Cancer 46(5):801–804 Epub 1990/11/15

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto R, Nishikori M, Kitawaki T, Sakai T, Hishizawa M, Tashima M et al (2008) PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood 111(6):3220–3224 Epub 2008/01/22

    Article  CAS  PubMed  Google Scholar 

  • Young LS, Deacon EM, Rowe M, Crocker J, Herbst H, Niedobitek G et al (1991) Epstein-Barr virus latent genes in tumour cells of Hodgkin’s disease. Lancet 337(8757):1617

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Leukaemia Lymphoma Research and to Cancer Research UK for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Murray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Murray, P., Bell, A. (2015). Contribution of the Epstein-Barr Virus to the Pathogenesis of Hodgkin Lymphoma. In: Münz, C. (eds) Epstein Barr Virus Volume 1. Current Topics in Microbiology and Immunology, vol 390. Springer, Cham. https://doi.org/10.1007/978-3-319-22822-8_12

Download citation

Publish with us

Policies and ethics