Skip to main content

Boundary Controlled Iterated Function Systems

  • Conference paper
  • First Online:
  • 1048 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9213))

Abstract

Boundary Controlled Iterated Function Systems is a new layer of control over traditional (linear) IFS, allowing creation of a wide variety of shapes. In this work, we demonstrate how subdivision schemes may be generated by means of Boundary Controlled Iterated Function Systems, as well as how we may go beyond the traditional subdivision schemes to create free-form fractal shapes. BC-IFS is a powerful tool allowing creation of an object with a prescribed topology (e.g. surface patch) independent of its geometrical texture. We also show how to impose constraints on the IFS transformations to guarantee the production of smooth shapes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Strictly speaking, we do not need the equality of the halftangents, collinearity suffice, so the adjacency constraint can be written as \(T{}_0^e {B{}_1^e}' \begin{bmatrix}-\alpha \\ \alpha \end{bmatrix} = T{}_1^e {B{}_0^e}' \begin{bmatrix}-1 \\ 1\end{bmatrix}\) for some \(\alpha \ne 0\).

References

  1. Aron, J.: The mandelbulb: first ‘true’ 3D image of famous fractal. New Sci. 204(2736), 54 (2009)

    Article  Google Scholar 

  2. Bandt, C., Gummelt, P.: Fractal Penrose tilings I. Construction and matching rules. Aequationes Math. 53(1–2), 295–307 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barnsley, M., Hutchinson, J., Stenflo, O.: V-variable fractals: fractals with partial self similarity. Adv. Math. 218(6), 2051–2088 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barnsley, M.: Fractals Everywhere. Academic Press Professional Inc., San Diego (1988)

    MATH  Google Scholar 

  5. Barnsley, M., Vince, A.: Fractal homeomorphism for bi-affine iterated function systems. Int. J. Appl. Nonlinear Sci. 1(1), 3–19 (2013)

    Article  MATH  Google Scholar 

  6. Cohen, N.: Fractal antenna applications in wireless telecommunications. In: Electronics Industries Forum of New England, 1997, Professional Program Proceedings, pp. 43–49, May 1997

    Google Scholar 

  7. Falconer, H.J.: Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. Wiley, New York (1990)

    MATH  Google Scholar 

  8. Gentil, C.: Les fractales en synthése d’images: le modèle IFS. Ph.D. thesis, Université LYON I, March 1992. Jury: Vandorpe, D., Chenin, P., Mazoyer, J., Reveilles, J.P., Levy Vehel, J., Terrenoire, M., Tosan, E

    Google Scholar 

  9. Guerin, E., Tosan, E., Baskurt, A.: Fractal coding of shapes based on a projected IFS model. In: Proceedings of 2000 International Conference on Image Processing, 2000, vol. 2, pp. 203–206, September 2000

    Google Scholar 

  10. Hutchinson, J.: Fractals and self-similarity. Indiana Univ. J. Math. 30, 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  11. Massopust, P.R.: Fractal functions and their applications. Chaos Solitons Fractals 8(2), 171–190 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mauldin, R.D., Williams, S.C.: Hausdorff dimension in graph directed constructions. Trans. Am. Math. Soc. 309(2), 811–829 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  13. Peitgen, H.-O., Richter, P.: The Beauty of Fractals: Images of Complex Dynamical Systems. Springer, Heidelberg (1986)

    Book  MATH  Google Scholar 

  14. Pence, D.: The simplicity of fractal-like flow networks for effective heat and mass transport. Exp. Therm. Fluid Sci. 34(4), 474–486 (2010). ECI International Conference on Heat Transfer and Fluid Flow in Microscale

    Article  MathSciNet  Google Scholar 

  15. Prusinkiewicz, P., Hammel, M.: Language-restricted iterated function systems, koch constructions, and l-systems. In: SIGGRAPH 1994 Course Notes (1994)

    Google Scholar 

  16. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer-Verlag New York Inc., New York (1990)

    Book  Google Scholar 

  17. Puente, C., Romeu, J., Pous, R., Garcia, X., Benitez, F.: Fractal multiband antenna based on the sierpinski gasket. Electron. Lett. 32(1), 1–2 (1996)

    Article  Google Scholar 

  18. Rian, I.M., Sassone, M.: Tree-inspired dendriforms and fractal-like branching structures in architecture: a brief historical overview. Front. Archit. Res. 3(3), 298–323 (2014)

    Article  Google Scholar 

  19. Soo, S.C., Yu, K.M., Chiu, W.K.: Modeling and fabrication of artistic products based on IFS fractal representation. Comput. Aided Des. 38(7), 755–769 (2006)

    Article  Google Scholar 

  20. Terraz, O., Guimberteau, G., Mérillou, S., Plemenos, D., Ghazanfarpour, D.: 3Gmap L-systems: an application to the modelling of wood. Vis. Comput. 25(2), 165–180 (2009)

    Article  Google Scholar 

  21. Thollot, J., Tosan, E.: Construction of fractales using formal languages and matrices of attractors. In: Santos, H.P. (ed.) Conference on Computational Graphics and Visualization Techniques, Compugraphics, Alvor, Portugal, pp. 74–78 (1993)

    Google Scholar 

  22. Tosan, E.: Surfaces fractales définies par leurs bords. Grenoble (2006). Journées Courbes, surfaces et algorithmes

    Google Scholar 

  23. Zair, C.E., Tosan, E.: Fractal modeling using free form techniques. Comput. Graph. Forum 15(3), 269–278 (1996)

    Article  Google Scholar 

  24. Zhou, H., Sun, J., Turk, G., Rehg, J.M.: Terrain synthesis from digital elevation models. IEEE Trans. Vis. Comput. Graph. 13(4), 834–848 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Sokolov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sokolov, D., Gouaty, G., Gentil, C., Mishkinis, A. (2015). Boundary Controlled Iterated Function Systems. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2014. Lecture Notes in Computer Science(), vol 9213. Springer, Cham. https://doi.org/10.1007/978-3-319-22804-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22804-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22803-7

  • Online ISBN: 978-3-319-22804-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics