Skip to main content

Droplets, Bubbles and Ultrasound Interactions

  • Chapter
Therapeutic Ultrasound

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 880))

Abstract

The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bacon DR (1984) Finite amplitude distortion of the pulsed fields used in diagnostic ultrasound. Ultrasound Med Biol 10:189–195

    Article  CAS  PubMed  Google Scholar 

  • Biro GP, Blais P, Rosen AL (1987) Peruorocarbon blood substitutes. CRC Critic Rev Oncol Hematol 6:311–374

    Article  CAS  Google Scholar 

  • Bjerknes VFK (1906) Fields of force. Columbia University Press, New York

    Google Scholar 

  • Blackstock DT (1964) On plane, spherical and cylindrical sound waves of finite amplitude in loss less fluids. J Acoust Soc Am 36:217–219

    Article  Google Scholar 

  • Carneal CM, Kripfgans OD, Krucker J, Carson PL, Fowlkes JB (2011) A tissue mimicking ultrasound test object using droplet vaporization to create point targets. Pharm Res 58:2013–2025

    Google Scholar 

  • Church CC (1995) The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J Acoust Soc Am 97:1510–1521

    Article  Google Scholar 

  • Cleveland R, Hamilton M, Blackstock DT (1996) Time-domain modeling of finite amplitude sound in relaxing fluids. J Acoust Soc Am 99:3312–3318

    Article  Google Scholar 

  • de Jong N, Emmer M, Chin CT, Bouakaz A, Mastik F, Lohse D, Versluis M (2007) Compression-only behavior of phospholipid-coated contrast bubbles. Ultrasound Med Biol 33:653–656

    Article  PubMed  Google Scholar 

  • Epstein PS, Plesset MS (1950) On the stability of gas bubbles in liquid-gas solutions. J Chem Phys 18:1505–1509

    Article  CAS  Google Scholar 

  • Fabiilli ML, Haworth KJ, Sebastian IE, Kripfgans OD, Carson PL, Fowlkes JB (2010a) Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion. Ultrasound Med Biol 36:1364–1375

    Article  PubMed Central  PubMed  Google Scholar 

  • Fabiilli ML, Lee JA, Kripfgans OD, Carson PL, Fowlkes JB (2010b) Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions. Ultrasound Med Biol 27:2753–2765

    CAS  Google Scholar 

  • Giesecke T, Hynynen K (2003) Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro. Ultrasound Med Biol 29:1359–1365

    Article  PubMed  Google Scholar 

  • Gramiak R, Shah PM (1968) Echocardiography of the aortic root. Invest Radiol 3:356–366

    Article  CAS  PubMed  Google Scholar 

  • Hamilton M, Morfey C (2008) Model equations. In: Hamilton MF, Blackstock DT (eds) Nonlinear acoustics. Acoustical Society of America, Melville, pp 41–63

    Google Scholar 

  • Hamilton M, Tjotta JN, Tjotta S (1985) Nonlinear effects in the farfield of a directive sound source. J Acoust Soc Am 78:202–216

    Article  Google Scholar 

  • Hart TS, Hamilton MF (1988) Nonlinear effects in focused sound beams. J Acoust Soc Am 84:1488–1496

    Article  Google Scholar 

  • Kamakura T, Ishiwata T, Matsuda K (2000) Model equation for strongly focused finite amplitude sound beams. J Acoust Soc Am 107:3035–3046

    Article  PubMed  Google Scholar 

  • Karshafian R, Bevan PD, Williams R, Samac S, Burns PN (2009) Sonoporation by ultrasound-activated microbubble contrast agents: effect of acoustic exposure parameters on cell membrane permeability and cell viability. Ultrasound Med Biol 35:847–860

    Article  PubMed  Google Scholar 

  • Klibanov AL (2006) Microbubble contrast agents: targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Invest Radiol 41:354–362

    Article  PubMed  Google Scholar 

  • Kripfgans OD, Fowlkes JB, Miller DL, Eldevik OP, Carson PL (2000) Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med Biol 26:1177–1189

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov VP (1971) Equation of nonlinear acoustics. Sov Phys Acoust 16:467–470

    Google Scholar 

  • Lee YS, Hamilton MF (1995) Time-domain modeling of pulsed finite-amplitude sound beams. J Acoust Soc Am 97:906–917

    Article  Google Scholar 

  • Lee D, Pierce A (1995) Parabolic equation development in recent decade. J Comput Acoust 3:95–173

    Article  Google Scholar 

  • Leighton TG (1994) The acoustic bubble. Academic, London

    Google Scholar 

  • Lindner JR (2004) Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 35:527–533

    Article  Google Scholar 

  • Long DM, Multer FK, Greenburg AG, Peskin GW, Lasser EC, Wickham WG, Sharts CM (1978) Tumor imaging with x-rays using macrophage uptake of radiopâque fluorocarbon emulsions. Surgery 84:104–112

    CAS  PubMed  Google Scholar 

  • Marmottant P, van der Meer SM, Emmer M, Versluis M, de Jong N, Hilgenfeldt S, Lohse D (2005) A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J Acoust Soc Am 118:3499–3505

    Article  CAS  Google Scholar 

  • Minnaert M (1933) On musical air-bubbles and sounds of running water. Philos Mag 16:235–248

    Article  Google Scholar 

  • Neppiras EA, Noltingk BE (1951) Cavitation produced by ultrasonics: theoretical conditions for the onset of cavitation. Proc Phys Soc B 64:1032–1038

    Article  Google Scholar 

  • Noltingk BE, Neppiras EA (1950) Cavitation produced by ultrasonics. Proc Phys Soc B 63:674–685

    Article  Google Scholar 

  • Overvelde M (2010) Ultrasound contrast agents: dynamics of coated bubbles. PhD thesis, University of Twente

    Google Scholar 

  • Overvelde M, Garbin V, Sijl J, Dollet B, de Jong N, Lohse D, Versluis M (2010) Nonlinear shell behavior of phospholipid-coated microbubbles. Ultrasound Med Biol 36:2080–2092

    Article  PubMed  Google Scholar 

  • Plesset MS (1949) The dynamics of cavitation bubbles. J Appl Phys 16:277–282

    Google Scholar 

  • Poritsky H (1952) The collapse or growth of a spherical bubble or cavity in a viscous fluid. Proceedings of the first US National Congress on Applied Mechanics, ASME, New York, pp 813–821

    Google Scholar 

  • Prosperetti A (2011) Advanced mathematics for applications. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  • Rapoport NY, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99:1095–1106

    Article  CAS  PubMed  Google Scholar 

  • Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam KH (2009) Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 138:268–276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rayleigh L (1917) On the pressure development in a liquid during the collapse of a spherical cavity. Philos Mag 32:94–98

    Article  Google Scholar 

  • Reznik N, Shpak O, Gelderblom E, Williams R, de Jong N, Versluis M, Burns P (2013) The efficiency and stability of bubble formation by acoustic vaporization of submicron perfluorocarbon droplets. Ultrasonics 53:1368–1376

    Article  CAS  PubMed  Google Scholar 

  • Schad KC, Hynynen K (2010) In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy. Phys Med Biol 55:4933–4947

    Article  PubMed  Google Scholar 

  • Shpak O, Kokhuis T, Luan Y, Lohse D, de Jong N, Fowlkes B, Fabiilli M, Versluis M (2013a) Ultrafast dynamics of the acoustic vaporization of phase-change microdroplets. J Acoust Soc Am 134:1610–1621

    Article  CAS  PubMed  Google Scholar 

  • Shpak O, Stricker L, Versluis M, Lohse D (2013b) The role of gas in ultrasonically driven vapor bubble growth. Phys Med Biol 58:2523–2535

    Article  PubMed  Google Scholar 

  • Shung KK (2006) Diagnostic ultrasound: imaging and blood flow measurements. CRC Press, Boca Raton

    Google Scholar 

  • Szabo TL (2004) Diagnostic ultrasound, imaging, inside out. Academic, New York

    Google Scholar 

  • Szabo TL, Clougherty F, Grossman C (1999) Effects on nonlinearity on the estimation of in situ values of acoustic output parameters. Ultrasound Med Biol 18:33–42

    CAS  Google Scholar 

  • Unger EC, Porter T, Culp W, Labell R, Matsunaga T, Zutshi R (2004) Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev 59:1291–1314

    Article  Google Scholar 

  • Unger EC, Hersh E, Vannan M, Matsunaga TO, McCreery T (2009) Local drug and gene delivery through microbubbles. Prog Cardiovasc Dis 41:45–54

    Google Scholar 

  • Varslot T, Taraldsen G (2005) Computer simulation of forward wave propagation in soft tissue. IEEE Trans Ultrason Ferroelectr Freq Control 52:1473–1482

    Article  PubMed  Google Scholar 

  • Westervelt P (1963) Parametric acoustic array. J Acoust Soc Am 52:535–537

    Article  Google Scholar 

  • Williams R, Wright C, Cherin E, Reznik N, Lee M, Gorelikov I, Foster FS, Matsuura N, Burns PN (2013) Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer. Phys Med Biol 39:475–489

    Google Scholar 

  • Zabolotskaya EA, Khokhlov RV (1969) Quasi-plane waves in the nonlinear acoustics of confined beams. Sov Phys Acoust 15:35–40

    Google Scholar 

  • Zhang P, Porter T (2010) An in vitro study of a phase-shift nanoemulsion: a potential nucleation agent for bubble-enhanced HIFU tumor ablation. Ultrasound Med Biol 36:1856–1866

    Article  PubMed  Google Scholar 

  • Zhang M, Fabiilli ML, Haworth KJ, Fowlkes JB, Kripfgans OD, Roberts WW, Ives KA, Carson PL (2010) Initial investigation of acoustic droplet vaporization for occlusion in canine kidney. Ultrasound Med Biol 36:1691–1703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Versluis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shpak, O., Verweij, M., de Jong, N., Versluis, M. (2016). Droplets, Bubbles and Ultrasound Interactions. In: Escoffre, JM., Bouakaz, A. (eds) Therapeutic Ultrasound. Advances in Experimental Medicine and Biology, vol 880. Springer, Cham. https://doi.org/10.1007/978-3-319-22536-4_9

Download citation

Publish with us

Policies and ethics