Skip to main content

Interpretation of Black-Box Predictive Models

  • Chapter
  • First Online:
Book cover Measures of Complexity

Abstract

Many machine learning applications involve predictive data-analytic modeling using black-box techniques. A common problem in such studies is understanding/interpretation of estimated nonlinear high-dimensional models. Whereas human users naturally favor simple interpretable models, such models may not be practically feasible with modern adaptive methods such as Support Vector Machines (SVMs) , Multilayer Perceptron Networks (MLPs), AdaBoost , etc. This chapter provides a brief survey of the current techniques for visualization and interpretation of SVM-based classification models, and then highlights potential problems with such methods. We argue that, under the VC-theoretical framework, model interpretation cannot be achieved via technical analysis of predictive data-analytic models. That is, any meaningful interpretation should incorporate application domain knowledge outside data analysis. We also describe a simple graphical technique for visualization of SVM classification models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, N.M., Hand, D.J.: Improving the practice of classifier performance assessment. Neural Comput. 12(2), 305–311 (2000)

    Article  Google Scholar 

  2. Ahn, J., Marron, J.: The maximal data piling direction for discrimination. Biometrika 97(1), 254–259 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barakat, N., Bradley, A.: Rule-extraction from support vector machines: a review. Neurocomputing 74(1–3), 178–190 (2010)

    Article  Google Scholar 

  4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  5. Bradley, A.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  6. Breiman, L.: Statistical modeling: the two cultures. Stat. Sci. 16(3), 199–231 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caragea, D., Cook, D., Honavar, V.G.: Gaining insights into support vector machine pattern classifiers using projection-based tour methods. In: Proceedings of KDD, pp. 251–256 (2001)

    Google Scholar 

  8. Cherkassky, V.: Predictive learning, knowledge discovery and philosophy of science (invited lecture). In: Lin, J., et al. (eds.) Advances in Computational Intelligence, vol. 7311, pp. 209–233. Springer, Berlin (2012)

    Chapter  Google Scholar 

  9. Cherkassky, V.: Predictive Learning. http://VCtextbook.com (2013)

  10. Cherkassky, V., Dhar, S.: Simple method for interpretation of high-dimensional nonlinear SVM classification models. In: Proceedings of the 2010 International Conference on Data Mining (DMIN 2010), pp. 267–272 (2010)

    Google Scholar 

  11. Cherkassky, V., Dhar, S.: Market timing of international mutual funds: a decade after the scandal. In: Proceedings of Computational Intelligence for Financial Engineering and Economics, pp. 1–8 (2012)

    Google Scholar 

  12. Cherkassky, V., Dhar, S., Dai, W.: Practical conditions for effectiveness of the universum learning. IEEE Trans. Neural Netw. 22(8), 1241–1255 (2011)

    Article  Google Scholar 

  13. Cherkassky, V., Mulier, F.: Learning from Data: Concepts, Theory, and Methods. Wiley, New York (1998)

    MATH  Google Scholar 

  14. Cherkassky, V., Mulier, F.: Learning from Data: Concepts, Theory, and Methods, 2nd edn. Wiley, New York (2007)

    Book  Google Scholar 

  15. Cook, D., Swayne, D.F.: Interactive and Dynamic Graphics for Data Analysis: With Examples Using R and GGobi. Springer, New York (2007)

    Book  Google Scholar 

  16. Diederich, J.: Rule Extraction from Support Vector Machines. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  17. Fisher, R.: The logic of inductive inference. J. R. Stat. Soc. 98(1), 39–82 (1935)

    Article  Google Scholar 

  18. Fisher, R.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1935)

    Article  Google Scholar 

  19. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)

    Article  MATH  Google Scholar 

  20. Hand, D.J.: Classifier technology and the illusion of progress. Stat. Sci. 21(1), 1–14 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, Cambridge (2001)

    Google Scholar 

  22. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, New York (2001)

    Book  Google Scholar 

  23. Martens, D., Provost, F.: Explaining documents’ classifications. http://pages.stern.nyu.edu/~fprovost/Papers/martens-CeDER-11-01.pdf (2011)

  24. Martens, D., Baesens, B., Gestel, T.: Decompositional rule extraction from support vector machines by active learning. IEEE Trans. Knowl. Data Eng. 21(2), 178–191 (2009)

    Article  Google Scholar 

  25. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Smola, A., et al. (eds.) Advances in Large Margin Classifiers, pp. 61–74. MIT Press, Cambridge (2000)

    Google Scholar 

  26. Poulet, F.: SVM and graphical algorithms: a cooperative approach. In: Proceedings of the Fourth IEEE International Conference on Data Mining, pp. 499–502 (2004)

    Google Scholar 

  27. Roweis, S.: Data for MATLAB hackers. http://www.cs.nyu.edu/~roweis/data.html

  28. Suykens, J.A.K., Van Gestel, T., de Brabanter, J., de Moor, B., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  29. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Boston (2006)

    Google Scholar 

  30. United States Congress: Mutual funds: who’s looking out for investors? http://www.access.gpo.gov/congress/house/pdf/108hrg/92982.pdf. Accessed on 10 Mar 2014

  31. Vapnik, V.: The Nature of Statistical Learning theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  32. Vapnik, V.N.: : Estimation of Dependences Based on Empirical Data. Empirical Inference Science: Afterword of 2006. Springer, New York (2006)

    Google Scholar 

  33. Wang, X., Wu, S., Li, Q.: SVMV—a novel algorithm for the visualization of SVM classification results. In: Wang, J., et al. (eds.) Advances in Neural Networks. Lecture Notes in Computer Science, vol. 3971, pp. 968–973. Springer, Berlin (2006)

    Google Scholar 

  34. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Elsevier, Amsterdam (2005)

    Google Scholar 

  35. Zitzewitz, E.: Who cares about shareholders? Arbitrage proofing mutual funds. J. Law Econ. Organ. 19(2), 245–280 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Cherkassky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cherkassky, V., Dhar, S. (2015). Interpretation of Black-Box Predictive Models. In: Vovk, V., Papadopoulos, H., Gammerman, A. (eds) Measures of Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-21852-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21852-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21851-9

  • Online ISBN: 978-3-319-21852-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics