Skip to main content

Type Ia Supernovae

  • Reference work entry
  • First Online:
Handbook of Supernovae

Abstract

Type Ia supernovae play an important role in many areas of astrophysics, as extragalactic distance indicators and the most mature probes of cosmic acceleration, as the main producers of iron in the Universe, as end points of stellar evolution, and as contributors to the chemical evolution of galaxies. While Type Ia supernovae have long been hypothesized to result from the thermonuclear explosions of carbon-oxygen white dwarfs, the stellar systems that produce these events and their explosion mechanisms are still very much under debate. The aim of this chapter is to describe the observational characteristics of Type Ia supernovae, ranging from their light curve and spectral properties to constraints from the galaxies within which they explode. Although they are a predominantly optical phenomenon, their observational signatures from gamma-ray to radio wavelength are discussed. An overview of the potential channels through which they could explode is also provided, along with the best current observational tests of the different scenarios. The use of Type Ia supernovae in modern cosmology, in the context of light curve-luminosity correlations, is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Arnett WD (1982) Type I supernovae. I – Analytic solutions for the early part of the light curve. ApJ 253:785

    Google Scholar 

  • Axelrod TS (1980) PhD thesis, California Univ., Santa Cruz

    Google Scholar 

  • Barone-Nugent RL et al (2012) Near-infrared observations of Type Ia supernovae: the best known standard candle for cosmology. MNRAS 425:1007

    Article  ADS  Google Scholar 

  • Betoule M et al (2014) Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. A&A 568:A22

    Article  ADS  Google Scholar 

  • Bildsten L, Shen KJ, Weinberg NN, Nelemans G (2007) Faint thermonuclear supernovae from AM canum venaticorum binaries. ApJ 662:L95

    Article  ADS  Google Scholar 

  • Bloom JS et al (2012) A compact degenerate primary-star progenitor of SN 2011fe. ApJ 744:L17

    Article  ADS  Google Scholar 

  • Chomiuk L et al (2016) A deep search for prompt radio emission from thermonuclear supernovae with the very large array. ApJ 821:119

    Article  ADS  Google Scholar 

  • Churazov E et al (2015) Gamma-rays from Type Ia supernova SN 2014J. ApJ 812:62

    Article  ADS  Google Scholar 

  • Claeys JSW, Pols OR, Izzard RG, Vink J, Verbunt FWM (2014) Theoretical uncertainties of the Type Ia supernova rate. A&A 563:A83

    Article  ADS  Google Scholar 

  • Colgate SA, McKee C (1969) Early supernova luminosity. ApJ 157:623

    Article  ADS  Google Scholar 

  • Conley A et al (2008) SiFTO: An empirical method for fitting SN Ia light curves. ApJ 681:482

    Article  ADS  Google Scholar 

  • Darnley MJ et al (2015) A remarkable recurrent nova in M31: discovery and optical/UV observations of the predicted 2014 eruption. A&A 580:A45

    Article  ADS  Google Scholar 

  • Diehl R et al (2014) Early56Ni decay gamma rays from SN 2014J suggest an unusual explosion. Science 345:1162

    Article  ADS  Google Scholar 

  • Ellis RS et al (2008) Verifying the cosmological utility of Type Ia supernovae: implications of a dispersion in the ultraviolet spectra. ApJ 674:51

    Article  ADS  Google Scholar 

  • Filippenko AV (1997) Optical spectra of supernovae. ARA&A 35:309

    Article  ADS  Google Scholar 

  • Firth RE et al (2015) The rising light curves of Type Ia supernovae. MNRAS 446:3895

    Article  ADS  Google Scholar 

  • Foley RJ et al (2012) A Mismatch in the ultraviolet spectra between low-redshift and intermediate-redshift Type Ia supernovae as a possible systematic uncertainty for supernova cosmology. AJ 143:113

    Article  ADS  Google Scholar 

  • Fransson C, Jerkstrand A (2015) Reconciling the infrared catastrophe and observations of SN 2011fe ApJ 814:L2

    Google Scholar 

  • Ganeshalingam M et al (2010) Results of the lick observatory supernova search follow-up photometry program: BVRI light curves of 165 type Ia supernovae. ApJS 190:418

    Article  ADS  Google Scholar 

  • Gerardy CL et al (2004) SN 2003du: signatures of the circumstellar environment in a normal Type Ia supernova? ApJ 607:391

    Article  ADS  Google Scholar 

  • Gerardy CL et al (2007) Signatures of delayed detonation, asymmetry, and electron capture in the mid-infrared spectra of supernovae 2003hv and 2005df. ApJ 661:995

    Article  ADS  Google Scholar 

  • Greggio L (2005) The rates of type Ia supernovae. I. Analytical formulations. A&A 441:1055

    ADS  MATH  Google Scholar 

  • Guy J, Astier P, Nobili S, Regnault N, Pain R (2005) SALT: a spectral adaptive light curve template for type Ia supernovae. A&A 443:781

    Article  ADS  Google Scholar 

  • Hamuy M, Phillips MM, Suntzeff NB, Schommer RA, Maza J, Aviles R (1996) The absolute luminosities of the Calan/Tololo Type IA supernovae. AJ 112:2391

    Article  ADS  Google Scholar 

  • Hamuy M et al (2000) A search for environmental effects on Type IA supernovae. AJ 120:1479

    Article  ADS  Google Scholar 

  • Hicken M et al (2009) CfA3: 185 Type Ia supernova light curves from the CfA. ApJ 700:331

    Article  ADS  Google Scholar 

  • Hoeflich P, Khokhlov A, Wheeler JC, Phillips MM, Suntzeff NB, Hamuy M (1996) Maximum brightness and postmaximum decline of light curves of Type IA supernovae: a comparison of theory and observations. ApJ 472:L81+

    Google Scholar 

  • Hoeflich P (1991) Asphericity effects in scattering dominated photospheres. A&A 246:481

    ADS  Google Scholar 

  • Horesh A et al (2012) Early radio and X-ray observations of the youngest nearby Type Ia supernova PTF 11kly (SN 2011fe). ApJ 746:21

    Article  ADS  Google Scholar 

  • Iben I, Tutukov AV (1984) Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M not greater than about 9 solar masses). ApJS 54:335

    Article  ADS  Google Scholar 

  • Isern J, Bravo E, Hirschmann A (2008) Detection and interpretation of γ-ray emission from SN Ia. New A 52:377

    ADS  Google Scholar 

  • Jha S, Riess AG, Kirshner RP (2007) Improved distances to Type Ia supernovae with multicolor light-curve shapes: MLCS2k2. ApJ 659:122

    Article  ADS  Google Scholar 

  • Kasen D (2010) Seeing the collision of a supernova with its companion star. ApJ 708:1025

    Article  ADS  Google Scholar 

  • Kasen D et al (2003) Analysis of the flux and polarization spectra of the Type Ia supernova SN 2001el: exploring the geometry of the high-velocity ejecta. ApJ 593:788

    Article  ADS  Google Scholar 

  • Kasen D, Woosley SE (2007) On the origin of the Type Ia supernova width-luminosity relation. ApJ 656:661

    Article  ADS  Google Scholar 

  • Kashi A, Soker N (2011) A circumbinary disc in the final stages of common envelope and the core-degenerate scenario for Type Ia supernovae. MNRAS 417:1466

    Article  ADS  Google Scholar 

  • Kozai Y (1962) Secular perturbations of asteroids with high inclination and eccentricity. AJ 67:591

    Article  ADS  MathSciNet  Google Scholar 

  • Krisciunas K et al (2004) Optical and infrared photometry of the Type Ia supernovae 1991T, 1991bg, 1999ek, 2001bt, 2001cn, 2001cz, and 2002bo. AJ 128:3034

    Article  ADS  Google Scholar 

  • Leonard DC (2007) Constraining the Type Ia supernova progenitor: the search for hydrogen in nebular spectra. ApJ 670:1275

    Article  ADS  Google Scholar 

  • Leonard DC, Li W, Filippenko AV, Foley RJ, Chornock R (2005) Evidence for spectropolarimetric diversity in Type Ia supernovae. ApJ 632:450

    Article  ADS  Google Scholar 

  • Li W et al (2011) Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature 480:348

    Article  ADS  Google Scholar 

  • Liu ZW et al (2012) Three-dimensional simulations of the interaction between Type Ia supernova ejecta and their main sequence companions. A&A 548:A2

    Article  ADS  Google Scholar 

  • Lucy LB (1999) Improved Monte Carlo techniques for the spectral synthesis of supernovae. A&A 345:211

    ADS  Google Scholar 

  • Maeda K et al (2010) An asymmetric explosion as the origin of spectral evolution diversity in type Ia supernovae. Nature 466:82

    Article  ADS  Google Scholar 

  • Maguire K et al (2012) Hubble space telescope studies of low-redshift Type Ia supernovae: evolution with redshift and ultraviolet spectral trends. MNRAS 426:2359

    Article  ADS  Google Scholar 

  • Maguire K et al (2014) Exploring the spectral diversity of low-redshift Type Ia supernovae using the palomar transient factory. MNRAS 444:3258

    Article  ADS  Google Scholar 

  • Mannucci F et al (2005) The supernova rate per unit mass. A&A 433:807

    Article  ADS  Google Scholar 

  • Margutti R et al(2014) No X-rays from the very nearby Type Ia SN 2014J: constraints on its environment. ApJ 790:52

    Google Scholar 

  • Marion GH et al (2016) SN˜2012cg: evidence for interaction between a normal Type Ia supernova and a non-degenerate binary companion. ApJ 820:92

    Article  ADS  Google Scholar 

  • Mattila S et al (2005) Early and late time VLT spectroscopy of SN 2001el – progenitor constraints for a type Ia supernova. A&A 443:649

    Article  ADS  Google Scholar 

  • Mazzali PA et al (2005) High-velocity features: a ubiquitous property of Type Ia supernovae. ApJ 623:L37

    Article  ADS  Google Scholar 

  • Mazzali PA et al (2015) Nebular spectra and abundance tomography of the Type Ia supernova SN 2011fe: a normal SN Ia with a stable Fe core. MNRAS 450:2631

    Article  ADS  Google Scholar 

  • Mazzali PA et al (2014) Hubble space telescope spectra of the Type Ia supernova SN 2011fe: a tail of low-density, high-velocity material with Z > Z solar . MNRAS 439:1959

    Article  ADS  Google Scholar 

  • Mennekens N, Vanbeveren D, De Greve JP, De Donder E (2010) The delay-time distribution of Type Ia supernovae: a comparison between theory and observation. A&A 515:A89

    Article  ADS  Google Scholar 

  • Nomoto K (1982) Accreting white dwarf models for type I supernovae. I – Presupernova evolution and triggering mechanisms. ApJ 253:798

    Google Scholar 

  • Nomoto K, Iben I (1985) Carbon ignition in a rapidly accreting degenerate dwarf – A clue to the nature of the merging process in close binaries. ApJ 297:531

    Article  ADS  Google Scholar 

  • Nomoto K, Sugimoto D (1977) Rejuvenation of helium white dwarfs by mass accretion. PASJ 29:765

    ADS  Google Scholar 

  • Nugent P, Phillips M, Baron E, Branch D, Hauschildt P (1995) Evidence for a spectroscopic sequence among Type 1a supernovae. ApJ 455:L147+

    Google Scholar 

  • Nugent PE et al (2011) Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star. Nature 480:344

    Article  ADS  Google Scholar 

  • Olling RP et al (2015) No signature of ejecta interaction with a stellar companion in three type Ia supernovae. Nature 521:332

    Article  ADS  Google Scholar 

  • Pagnotta A, Schaefer BE (2014) Identifying and quantifying recurrent Novae masquerading as classical novae. ApJ 788:164

    Article  ADS  Google Scholar 

  • Pakmor R, Kromer M, Röpke FK, Sim SA, Ruiter AJ, Hillebrandt W (2010) Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with mass ˜0.9M solar . Nature 463:61

    Google Scholar 

  • Pan K-C, Ricker PM, Taam RE (2012) Impact of Type Ia supernova ejecta on binary companions in the single-degenerate scenario. ApJ 750:151

    Article  ADS  Google Scholar 

  • Patat F, Baade D, Höflich P, Maund JR, Wang L, Wheeler JC (2009) VLT spectropolarimetry of the fast expanding type Ia SN 2006X. A&A 508:229

    Article  ADS  Google Scholar 

  • Patat F et al (2007) Detection of circumstellar material in a normal Type Ia supernova. Science 317:924

    Article  ADS  Google Scholar 

  • Perlmutter S et al (1999) Measurements of omega and lambda from 42 high-redshift supernovae. ApJ 517:565

    Article  ADS  Google Scholar 

  • Philipp M. M. (1993) The absolute magnitudes of Type IA supernovae. ApJ, 413, 105L

    Article  ADS  Google Scholar 

  • Piro AL, Nakar E (2014) Constraints on shallow56Ni from the early light curves of Type Ia supernovae. ApJ 784:85

    Article  ADS  Google Scholar 

  • Raskin C, Kasen D (2013) Tidal tail ejection as a signature of Type Ia supernovae from white dwarf mergers. ApJ 772:1

    Article  ADS  Google Scholar 

  • Riess AG et al (1998) Observational evidence from supernovae for an accelerating Universe and a cosmological constant. AJ 116:1009

    Article  ADS  Google Scholar 

  • Riess AG, Press WH, Kirshner RP (1996) A precise distance indicator: Type IA supernova multicolor light-curve shapes. ApJ 473:88

    Article  ADS  Google Scholar 

  • Shen KJ, Bildsten L (2014) The ignition of carbon detonations via converging shock waves in white dwarfs. ApJ 785:61

    Article  ADS  Google Scholar 

  • Shen KJ, Guillochon J, Foley RJ (2013) Circumstellar absorption in double detonation Type Ia supernovae. ApJ 770:L35

    Article  ADS  Google Scholar 

  • Sim SA, Mazzali PA (2008) On the γ-ray emission of Type Ia supernovae. MNRAS 385:1681

    Article  ADS  Google Scholar 

  • Soker N, Kashi A, García-Berro E, Torres S, Camacho J (2013) Explaining the Type Ia supernova PTF 11kx with a violent prompt merger scenario. MNRAS 431:1541

    Article  ADS  Google Scholar 

  • Sollerman J et al (2004) The late-time light curve of the type Ia supernova 2000cx. A&A 428:555

    Article  ADS  Google Scholar 

  • Sternberg A et al (2011) Circumstellar material in Type Ia supernovae via sodium absorption features. Science 333:856

    Article  ADS  Google Scholar 

  • Stritzinger MD et al (2011) The carnegie supernova project: second photometry data release of low-redshift Type Ia supernovae. AJ 142:156

    Article  ADS  Google Scholar 

  • Sullivan M et al (2006) Rates and properties of Type Ia supernovae as a function of mass and star formation in their host galaxies. ApJ 648:868

    Article  ADS  Google Scholar 

  • Telesco CM et al (2015) Mid-IR Spectra of Type Ia SN 2014J in M82 Spanning the First 4 Months. ApJ 798:93

    Article  ADS  Google Scholar 

  • Thomas RC et al (2011) Type Ia supernova carbon footprints. ApJ 743:27

    Article  ADS  Google Scholar 

  • Tripp R. (1998) A two-parameter luminosity correction for Type IA supernovae. A&A, 331, 815

    ADS  Google Scholar 

  • Wang L et al (2006) Premaximum spectropolarimetry of the Type Ia SN 2004dt. ApJ 653:490

    Article  ADS  Google Scholar 

  • Wang L, Höflich P, Wheeler JC (1997) Supernovae and their host galaxies. ApJ 483:L29

    Article  ADS  Google Scholar 

  • Wang X et al (2009) The golden standard Type Ia supernova 2005cf: observations from the ultraviolet to the near-infrared wavebands. ApJ 697:380

    Article  ADS  Google Scholar 

  • Webbink RF (1984) Double white dwarfs as progenitors of R Coronae Borealis stars and Type I supernovae. ApJ 277:355

    Article  ADS  Google Scholar 

  • Wheeler JC, Höflich P, Harkness RP, Spyromilio J (1998) Explosion diagnostics of Type IA supernovae from early infrared spectra. ApJ 496:908

    Article  ADS  Google Scholar 

  • Wheeler JC, Lecar M, McKee CF (1975) Supernovae in binary systems. ApJ 200:145

    Article  ADS  Google Scholar 

  • Whelan J, Iben IJ (1973) Binaries and supernovae of Type I. ApJ 186:1007

    Article  ADS  Google Scholar 

  • Woosley SE, Taam RE, Weaver TA (1986) Models for Type I supernova. I – detonations in white dwarfs. ApJ 301:601

    Google Scholar 

  • Yungelson L, Livio M (1998) Type IA supernovae: an examination of potential progenitors and the redshift distribution. ApJ 497:168

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate Maguire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Maguire, K. (2017). Type Ia Supernovae. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_36

Download citation

Publish with us

Policies and ethics