Skip to main content

Approximating Nearest Neighbor Distances

  • Conference paper
  • First Online:
Book cover Algorithms and Data Structures (WADS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9214))

Included in the following conference series:

Abstract

Several researchers proposed using non-Euclidean metrics on point sets in Euclidean space for clustering noisy data. Almost always, a distance function is desired that recognizes the closeness of the points in the same cluster, even if the Euclidean cluster diameter is large. Therefore, it is preferred to assign smaller costs to the paths that stay close to the input points.

In this paper, we consider a natural metric with this property, which we call the nearest neighbor metric. Given a point set P and a path \(\gamma \), this metric is the integral of the distance to P along \(\gamma \). We describe a \((3+\varepsilon )\)-approximation algorithm and a more intricate \((1+\varepsilon )\)-approximation algorithm to compute the nearest neighbor metric. Both approximation algorithms work in near-linear time. The former uses shortest paths on a sparse graph defined over the input points. The latter uses a sparse sample of the ambient space, to find good approximate geodesic paths.

Partially supported by the NSF grant CCF-1065106.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Determining approximate shortest paths on weighted polyhedral surfaces. J. ACM 52(1), 25–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alliez, P., Rineau, L., Tayeb, S., Tournois, J., Yvinec, M.: 3D mesh generation. In: CGAL User and Reference Manual. CGAL Editorial Board, 4.1 edn. (2012)

    Google Scholar 

  3. Bousquet, O., Chapelle, O., Hein, M.: Measure based regularization. In: 16th NIPS (2004)

    Google Scholar 

  4. Bernoulli, J.: Branchistochrone problem. Acta Eruditorum, June 1696

    Google Scholar 

  5. Bijral, A.S., Ratliff, N.D., Srebro, N.: Semi-supervised learning with density based distances. In: Cozman, F.G., Pfeffer, A. (eds.) UAI, pp. 43–50. AUAI Press (2011)

    Google Scholar 

  6. Cohen, M.B., Fasy, B.T., Miller, G.L., Nayyeri, A., Sheehy, D., Velingker, A.: Approximating nearest neighbor distances, 2015. CoRR, abs/1502.08048

    Google Scholar 

  7. De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational Geometry. Springer (2000)

    Google Scholar 

  8. Hwang, S.J., Damelin, S.B., Hero, A.O., III: Shortest path through random points (2014). arXiv/1202.0045v3

    Google Scholar 

  9. Hudson, B., Oudot, S.Y., Miller, G.L., Sheehy, D.R.: Topological inference via meshing. In: SOCG: Proceedings of the 26th ACM Symposium on Computational Geometry (2010)

    Google Scholar 

  10. Har-peled, S.: Geometric Approximation Algorithms. American Mathematical Society, Boston (2011)

    Book  MATH  Google Scholar 

  11. Kim, J., Hespanha, J.P.: Discrete approximations to continuous shortest-path: Application to minimum-risk path planning for groups of uavs. In: 42nd IEEE ICDC, January 2003

    Google Scholar 

  12. Lukovszki, Tamás, Schindelhauer, Christian, Volbert, Klaus: Resource efficient maintenance of wireless network topologies. Journal of Universal Computer Science 12(9), 1292–1311 (2006)

    Google Scholar 

  13. Joseph, S.B.: Mitchell and Christos H. Papadimitriou. The weighted region problem: finding shortest paths through a weighted planar subdivision. J. ACM 38(1), 18–73 (1991)

    Article  MATH  Google Scholar 

  14. Miller, G.L., Phillips, T., Sheehy, D.R.: Linear-size meshes. In: CCCG: Canadian Conference in Computational Geometry (2008)

    Google Scholar 

  15. Miller, G.L., Phillips, T., Sheehy, D.R.: Beating the spread: Time-optimal point meshing. In: SOCG: Proceedings of the 27th ACM Symposium on Computational Geometry (2011)

    Google Scholar 

  16. Miller, G.L., Sheehy, D.R., Velingker, A.: A fast algorithm for well-spaced points and approximate delaunay graphs. In: 29th SOCG. SoCG 2013, pp. 289–298. ACM, New York (2013)

    Google Scholar 

  17. Rowe, Neil, Ross, Ron: Optimal grid-free path planning across arbitrarily contoured terrain with anisotropic friction and gravity effects. IEEE Transactions on Robotics and Automation 6(5), 540–553 (1990)

    Article  Google Scholar 

  18. Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin, M.C., Manocha, Dinesh (eds.) FCRC-WS 1996 and WACG 1996. LNCS, vol. 1148, pp. 203–222. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  19. Sheehy, D.: Mesh Generation and Geometric Persistent Homology. PhD thesis, Carnegie Mellon University, Pittsburgh, July 2011. CMU CS Tech Report CMU-CS-11-121

    Google Scholar 

  20. Sheehy, Donald R.: New Bounds on the Size of Optimal Meshes. Computer Graphics Forum 31(5), 1627–1635 (2012)

    Article  Google Scholar 

  21. Si, H.: TetGen: A quality tetrahedral mesh generator and a 3D Delaunay triangulator, January 2011. http://tetgen.org/

  22. Sajama and Orlitsky, A.: Estimating and computing density based distance metrics. In: ICML 2005, pp. 760–767. ACM, New York (2005)

    Google Scholar 

  23. Strain, J.: Calculus of variation. http://math.berkeley.edu/ strain/170.S13/cov.pdf

  24. Tsitsiklis, John N.: Efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control 40, 1528–1538 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vincent, P., Bengio, Y.: Density sensitive metrics and kernels. In: Snowbird Workshop (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald R. Sheehy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cohen, M.B., Fasy, B.T., Miller, G.L., Nayyeri, A., Sheehy, D.R., Velingker, A. (2015). Approximating Nearest Neighbor Distances. In: Dehne, F., Sack, JR., Stege, U. (eds) Algorithms and Data Structures. WADS 2015. Lecture Notes in Computer Science(), vol 9214. Springer, Cham. https://doi.org/10.1007/978-3-319-21840-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21840-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21839-7

  • Online ISBN: 978-3-319-21840-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics