Skip to main content

Development and Regeneration of Sensory Hair Cells

  • Chapter
  • First Online:

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 64))

Abstract

Hair cells are sensory receptors for hearing and balance, and for detection of water movement in aquatic animals. In mammals, the vast majority of hair cells are formed during embryogenesis and early postnatal development, whereas in other vertebrates hair cells are formed throughout life. Destruction of hair cells is caused by genetic, environmental, or aging factors and results in sensorineural deficits that are irreversible in humans. Research in the 1980s demonstrated that nonmammalian vertebrates fully replace hair cells after damage and recover function, suggesting hair cell regeneration may someday be coaxed in humans as a treatment for some forms of hearing and balance deficits. To facilitate this possibility, subsequent studies explored the molecular and cellular bases of hair cell formation during development and after damage in mature animals. This chapter reviews the findings in each of these areas, describing similarities and differences across species, sensory organs, and age. For instance, while mature mammals have a limited innate ability to regenerate hair cells in the vestibular inner ear, no hair cells are replaced in the cochlea. Further, although the transcription factor (Atoh1) drives cells toward a hair cell fate during development in all types of animals and in nonmammals after damage, it has limited ability to promote hair cell regeneration in mature mammals. Finally, we discuss some of the hurdles that remain, as well as new technologies that may be used to move the field forward.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Atoh1 :

Atonal homolog 1

E:

Embryonic day

HMG:

High mobility group

Lfng :

Lunatic fringe

mTOR:

Mechanistic target of rapamycin

P:

Postnatal day

PI3K:

Phosphoinoside-3 kinase

References

  • Abrashkin, K. A., Izumikawa, M., Miyazawa, T., Wang, C. H., et al. (2006). The fate of outer hair cells after acoustic or ototoxic insults. Hearing Research, 218(1–2), 20–29.

    Article  PubMed  Google Scholar 

  • Adler, H. J., Komeda, M., & Raphael, Y. (1997). Further evidence for supporting cell conversion in the damaged avian basilar papilla. International Journal of Developmental Neuroscience, 15(4–5), 375–385.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed, M., Wong, E. Y., Sun, J., Xu, J., et al. (2012a). Eya1–Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Developmental Cell, 22, 377–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed, M., Xu, J., & Xu, P.X. (2012b). EYA1 and SIX1 drive the neuronal developmental program in cooperation with the SWI/SNF chromatin-remodeling complex and SOX2 in the mammalian inner ear. Development, 139, 1965–1977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appler, J. M., & Goodrich, L. V. (2011). Connecting the ear to the brain: Molecular mechanisms of auditory circuit assembly. Progress in Neurobiology, 93, 488–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson, P. J., Wise, A. K., Flynn, B. O., Nayagam, B. A., & Richardson, R. T. (2014). Hair cell regeneration after ATOH1 gene therapy in the cochlea of profoundly deaf adult guinea pigs. PLoS ONE, 9(7), e102077.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Avallone, B., Porritiello, M., Esposito, D., Mutone, R., et al. (2003). Evidence for hair cell regeneration in the crista ampullaris of the lizard Podarcis sicula. Hearing Research, 178(1–2), 79–88.

    Article  PubMed  Google Scholar 

  • Baird, R. A., Torres, M. A., & Schuff, N. R. (1993). Hair cell regeneration in the bullfrog vestibular otolith organs following aminoglycoside toxicity. Hearing Research, 65(1–2), 164–174.

    Article  CAS  PubMed  Google Scholar 

  • Baird, R. A., Burton, M. D., Lysakowski, A., Fashena, D. S., & Naeger, R. A. (2000). Hair cell recovery in mitotically blocked cultures of the bullfrog saccule. Proceedings of the National Academy of Sciences of the USA, 97(22),11722–11729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balak, K. J., Corwin, J. T., & Jones, J. E. (1990). Regenerated hair cells can originate from supporting cell progeny: Evidence from phototoxicity and laser ablation experiments in the lateral line system. The Journal of Neuroscience, 10(8), 2502–2512.

    CAS  PubMed  Google Scholar 

  • Bermingham-McDonogh, O., & Rubel, E. W. (2003). Hair cell regeneration: Winging our way towards a sound future. Current Opinion in Neurobiology, 13(1), 119–126.

    Article  CAS  PubMed  Google Scholar 

  • Bermingham, N. A., Hassan, B. A., Price, S. D., Vollrath, M. A., et al. (1999). Math1: An essential gene for the generation of inner ear hair cells. Science, 284,1837–1841.

    Article  CAS  PubMed  Google Scholar 

  • Bermingham-McDonogh, O., Stone, J. S., Reh, T. A., & Rubel, E. W. (2001). FGFR3 expression during development and regeneration of the chick inner ear sensory epithelia. Developmental Biology, 238(2), 247–259.

    Article  CAS  PubMed  Google Scholar 

  • Bok, J., Raft, S., Kong, K. A., Koo, S. K., et al. (2011). Transient retinoic acid signaling confers anterior-posterior polarity to the inner ear. Proceedings of the National Academy of Sciences of the USA, 108, 161–166.

    Article  CAS  PubMed  Google Scholar 

  • Bok, J., Zenczak, C., Hwang, C. H., & Wu, D. K. (2013). Auditory ganglion source of Sonic hedgehog regulates timing of cell cycle exit and differentiation of mammalian cochlear hair cells. Proceedings of the National Academy of Sciences of the USA, 110, 13869–13874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandt, N., Kuhn, S., Munkner, S., Braig, C., et al. (2007). Thyroid hormone deficiency affects postnatal spiking activity and expression of Ca2+ and K+ channels in rodent inner hair cells. The Journal of Neuroscience 27, 3174–3186.

    Article  CAS  PubMed  Google Scholar 

  • Brooker, R., Hozumi, K., & Lewis, J. (2006). Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear. Development, 133, 1277–1286.

    Article  CAS  PubMed  Google Scholar 

  • Burns, J. C., & Corwin, J. T. (2014). Responses to cell loss become restricted as the supporting cells in mammalian vestibular organs grow thick junctional actin bands that develop high stability. The Journal of Neuroscience, 34(5), 1998–2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns, J. C., Yoo, J. J., Atala, A., & Jackson, J. D. (2012). MYC gene delivery to adult mouse utricles stimulates proliferation of postmitotic supporting cells in vitro. PLoS ONE, 7(10), e48704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bylund, M., Andersson, E., Novitch, B. G., & Muhr, J. (2003). Vertebrate neurogenesis is counteracted by Sox1–3 activity. Nature Neuroscience, 6,1162–1168.

    Article  CAS  PubMed  Google Scholar 

  • Cafaro, J., Lee, G.-S., & Stone, J. S. (2007). Atoh1 expression defines activated progenitors as well as differentiating hair cells during avian hair cell regeneration. Developmental Dynamics, 236, 156–170.

    Article  CAS  PubMed  Google Scholar 

  • Cai, T., Jen, H. I., Kang, H., Klisch, T. J., et al. (2015). Characterization of the transcriptome of nascent hair cells and identification of direct targets of the Atoh1 transcription factor. The Journal of Neuroscience, 35(14), 5870–5883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai, R., Kuo, B., Wang, T., Liaw, E. J., et al. (2012). Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea. Proceedings of the National Academy of Sciences of the USA, 109(21), 8167–8172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chardin, S., & Romand, R. (1995). Regeneration and mammalian auditory hair cells. Science, 267(5198), 707–711.

    Article  CAS  PubMed  Google Scholar 

  • Chardin, S., & Romand, R. (1997). Factors modulating supernumerary hair cell production in the postnatal rat cochlea in vitro. International Journal of Developmental Neuroscience, 15(4–5), 497–507.

    Article  CAS  PubMed  Google Scholar 

  • Chen, P., & Segil, N. (1999). p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development, 126(8), 1581–1590.

    CAS  PubMed  Google Scholar 

  • Chen, P., Johnson, J. E., Zoghbi, H. Y., & Segil, N. (2002). The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development, 129(10), 2495–2505.

    CAS  PubMed  Google Scholar 

  • Collado, M. S., Thiede, B. R., Baker, W., Askew, C., et al. (2011). The postnatal accumulation of junctional E-cadherin is inversely correlated with the capacity for supporting cells to convert directly into sensory hair cells in mammalian balance organs. The Journal of Neuroscience, 31(33), 11855–11866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correia, M. J., Rennie, K. J., & Koo, P. (2001). Return of potassium ion channels in regenerated hair cells: Possible pathways and the role of intracellular calcium signaling. Annals of the New York Academy of Sciences, 942, 228–240.

    Article  CAS  PubMed  Google Scholar 

  • Corwin, J. T., & Cotanche, D. A. (1988). Regeneration of sensory hair cells after acoustic trauma. Science, 240(4860), 1772–1774.

    Article  CAS  PubMed  Google Scholar 

  • Costa, A., Sanchez-Guardado, L., Juniat, S., Gale, J. E., et al. (2015). Generation of sensory hair cells by genetic programming with a combination of transcription factors. Development, 142, 1948–1959.

    Article  CAS  PubMed  Google Scholar 

  • Cotanche, D. A. (1987a). Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma. Hearing Research, 30(2–3), 181–195.

    Article  CAS  PubMed  Google Scholar 

  • Cotanche, D. A. (1987b). Regeneration of the tectorial membrane in the chick cochlea following severe acoustic trauma. Hearing Research, 30(2–3), 197–206.

    Article  CAS  PubMed  Google Scholar 

  • Cotanche, D. A., & Corwin, J. T. (1991). Stereociliary bundles reorient during hair cell development and regeneration in the chick cochlea. Hearing Research, 52(2), 379–402.

    Article  CAS  PubMed  Google Scholar 

  • Cotanche, D. A., Messana, E. P., & Ofsie M. S. (1995). Migration of hyaline cells into the chick basilar papilla during severe noise damage. Hearing Research, 91(1–2), 148–159.

    Article  CAS  PubMed  Google Scholar 

  • Cox, B. C., Chai, R., Lenoir, A., Liu, Z., et al. (2014). Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development, 141(4), 816–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz, R. M., Lambert, P. R., & Rubel, E. W. (1987). Light microscopic evidence of hair cell regeneration after gentamicin toxicity in chick cochlea. Archives of Otolaryngology – Head and Neck Surgery, 113(10), 1058–1062.

    Article  CAS  PubMed  Google Scholar 

  • Cruz, I., Kappedal, R., Mackenzie, S. M., Hailey, D. W., et al. (2015). Robust regeneration of adult zebrafish lateral line hair cells reflects continued precursor pool maintenance. Developmental Biology, 402(2), 229–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dabdoub, A., Puligilla, C., Jones, J. M., Fritzsch, B., et al. (2008). Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proceedings of the National Academy of Sciences of the USA, 105, 18396–18401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daudet, N., Gibson, R., Shang, J., Bernard, A., et al. (2009). Notch regulation of progenitor cell behavior in quiescent and regenerating auditory epithelium of mature birds. Developmental Biology, 326, 86–100.

    Article  CAS  PubMed  Google Scholar 

  • Desai, S. S., Zeh, C., & Lysakowski, A. (2005). Comparative morphology of rodent vestibular periphery. I. Saccular and utricular maculae. Journal of Neurophysiology, 93(1), 251–266.

    Article  PubMed  Google Scholar 

  • Driver, E. C., Pryor, S. P., Hill, P., Turner, J., et al. (2008). Hedgehog signaling regulates sensory cell formation and auditory function in mice and humans. The Journal of Neuroscience, 28, 7350–7358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driver, E. C., Sillers, L., Coate, T. M., Rose, M. F., & Kelley, M. W. (2013). The Atoh1-lineage gives rise to hair cells and supporting cells within the mammalian cochlea. Developmental Biology, 376, 86–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duckert, L. G., & Rubel, E. W. (1990). Ultrastructural observations on regenerating hair cells in the chick basilar papilla. Hearing Research, 48(1–2), 161–182.

    Article  CAS  PubMed  Google Scholar 

  • Duckert, L. G., & Rubel, E. W. (1993). Morphological correlates of functional recovery in the chicken inner ear after gentamycin treatment. The Journal of Comparative Neurology, 331(1), 75–96.

    Article  CAS  PubMed  Google Scholar 

  • Dye, B. J., Frank, T. C., Newlands, S. D., & Dickman, J. D. (1999). Distribution and time course of hair cell regeneration in the pigeon utricle. Hearing Research, 133(1–2), 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Erkman, L., McEvilly, R. J., Luo, L., Ryan, A. K., et al. (1996). Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature, 381, 603–606.

    Article  CAS  PubMed  Google Scholar 

  • Forge, A., Li, L., Corwin, J. T., & Nevill, G. (1993). Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science, 259(5101), 1616–1619.

    Article  CAS  PubMed  Google Scholar 

  • Forge, A., Li, L., & Nevill, G. (1998). Hair cell recovery in the vestibular sensory epithelia of mature guinea pigs. The Journal of Comparative Neurology, 397(1), 69–88.

    Article  CAS  PubMed  Google Scholar 

  • Forrest, D., Erway, L. C., Ng, L., Altschuler, R., & Curran, T. (1996). Thyroid hormone receptor beta is essential for development of auditory function. Nature Genetics, 13, 354–357.

    Article  CAS  PubMed  Google Scholar 

  • Fujioka, M., Tokano, H., Fujioka, K. S., Okano, H., & Edge, A. S. (2011). Generating mouse models of degenerative diseases using Cre/lox-mediated in vivo mosaic cell ablation. The Journal of Clinical Investigation, 121(6), 2462–2469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gale, J. E., Meyers, J. R., Periasamy, A., & Corwin, J. T. (2002). Survival of bundleless hair cells and subsequent bundle replacement in the bullfrog’s saccule. Journal of Neurobiology, 50(2), 81–92.

    Article  PubMed  Google Scholar 

  • Gnedeva, K., & Hudspeth, A. J. (2015). SoxC transcription factors are essential for the development of the inner ear. Proceedings of the National Academy of Sciences of the USA, 112(45), 14066–14071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girod, D. A., Duckert, L. G., & Rubel, E. W. (1989). Possible precursors of regenerated hair cells in the avian cochlea following acoustic trauma. Hearing Research, 42(2–3), 175–194.

    Article  CAS  PubMed  Google Scholar 

  • Golub, J. S., Tong, L., Nguyen, T., Hume, C., et al. (2012). Hair cell replacement in adult mouse utricles after targeted ablation of hair cells with diphtheria toxin. The Journal of Neuroscience, 32(43), 15093–15105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodyear, R., & Richardson, G. (1997). Pattern formation in the basilar papilla: Evidence for cell rearrangement. The Journal of Neuroscience, 17(16), 6289–6301.

    CAS  PubMed  Google Scholar 

  • Gu, R., Montcouquiol, M., Marchionni, M., & Corwin, J. T. (2007). Proliferative responses to growth factors decline rapidly during postnatal maturation of mammalian hair cell epithelia. EJN European Journal of Neuroscience, 25(5), 1363–1372.

    Article  PubMed  Google Scholar 

  • Harris, J. A., Cheng, A. G., Cunningham, L. L., MacDonald, G., et al. (2003). Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio). Journal of the Association for Research in Otolaryngology, 4(2), 219–234.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashino, E., & Salvi, R. J. (1993). Changing spatial patterns of DNA replication in the noise-damaged chick cochlea. Journal of Cell Science, 105(1), 23–31.

    PubMed  Google Scholar 

  • Hawkins, R. D., Bashiardes, S., Helms, C. A., Hu, L., et al. (2003). Gene expression differences in quiescent versus regenerating hair cells of avian sensory epithelia: Implications for human hearing and balance disorders. Human Molecular Genetics, 12(11), 1261–1272.

    Article  CAS  PubMed  Google Scholar 

  • Head, J. R., Gacioch, L., Pennisi, M., & Meyers, J. R. (2013). Activation of canonical Wnt/β-catenin signaling stimulates proliferation in neuromasts in the zebrafish posterior lateral line. Developmental Dynamics, 242(7), 832–846.

    Article  CAS  PubMed  Google Scholar 

  • Hertzano, R., Montcouquiol, M., Rashi-Elkeles, S., Elkon, R., et al. (2004). Transcription profiling of inner ears from Pou4f3(ddl/ddl) identifies Gfi1 as a target of the Pou4f3 deafness gene. Human Molecular Genetics, 13, 2143–2153.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Z., & Corwin, J. T. (2007). Inner ear hair cells produced in vitro by a mesenchymal-to-epithelial transition. Proceedings of the National Academy of Sciences of the USA, 104(42), 16675–16680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Z., & Ulfendahl, M. (2013). The potential of stem cells for the restoration of auditory function in humans. Regenerative Medicine, 8(3), 309–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huh, S-H., Warchol, M. E., & Ornitz, D. M. (2015). Cochlear progenitor number is controlled through mesenchymal FGF receptor signaling. Elife, doi: 10.7554/eLife.05921.

  • Hume, C. R., Kirkegaard, M., & Oesterle, E. C. (2003). ErbB expression: The mouse inner ear and maturation of the mitogenic response to heregulin. Journal of the Association for Research in Otolaryngology, 4(3), 422–443.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacques, B. E., Puligilla, C., Weichert, R. M., Ferrer-Vaquer, A., et al. (2012). A dual function for canonical Wnt/beta-catenin signaling in the developing mammalian cochlea. Development, 139, 4395–4404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacques, B. E., Montgomery, W. H. 4th, Uribe, P. M., Yatteau, A., et al. (2014). The role of Wnt/β-catenin signaling in proliferation and regeneration of the developing basilar papilla and lateral line. Developmental Neurobiology, 74(4), 438–456.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, L., Romero-Carvajal, A., Haug, J. S., Seidel, C. W., & Piotrowski, T. (2014). Gene-expression analysis of hair cell regeneration in the zebrafish lateral line. Proceedings of the National Academy of Sciences of the USA, 111(14), E1383–E1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, J. E., & Corwin, J. T. (1996). Regeneration of sensory cells after laser ablation in the lateral line system: Hair cell lineage and macrophage behavior revealed by time-lapse video microscopy. The Journal of Neuroscience, 16(2), 649–662.

    CAS  PubMed  Google Scholar 

  • Jones, J. M., Montcouquiol, M., Dabdoub, A., Woods, C., & Kelley, M. W. (2006). Inhibitors of differentiation and DNA binding (Ids) regulate Math1 and hair cell formation during the development of the organ of Corti. The Journal of Neuroscience, 26, 550–558.

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen, J. M., & Mathiesen, C. (1988). The avian inner ear: Continuous production of hair cells in vestibular sensory organs, but not in the auditory papilla. Naturwissenschaften, 75(6), 319–320.

    Article  PubMed  Google Scholar 

  • Kawamoto, K., Ishimoto, S., Minoda, R., Brough, D. E., & Raphael, Y. (2003). Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. The Journal of Neuroscience, 23(11), 4395–4400.

    CAS  PubMed  Google Scholar 

  • Kawamoto, K., Izumikawa, M., Beyer, L. A., Atkin, G. M., & Raphael, Y. (2009). Spontaneous hair cell regeneration in the mouse utricle following gentamicin ototoxicity. Hearing Research, 247(1), 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Kelley, M. W., Talreja, D. R., & Corwin, J. T. (1995). Replacement of hair cells after laser microbeam irradiation in cultured organs of Corti from embryonic and neonatal mice. The Journal of Neuroscience, 15(4), 3013–3026.

    CAS  PubMed  Google Scholar 

  • Kelly, M. C., Chang, Q., Pan, A., Lin, X., & Chen, P. (2012). Atoh1 directs the formation of sensory mosaics and induces cell proliferation in the postnatal mammalian cochlea in vivo. The Journal of Neuroscience, 32(19), 6699–6710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kempfle, J. S., Turban, J. L., & Edge, A. S. (2016). Sox2 in the differentiation of cochlear progenitor cells. Science Reports, 6, 23293.

    Article  CAS  Google Scholar 

  • Kevetter, G. A., Blumberg, K. R., & Correia, M. J. (2000). Hair cell and supporting cell density and distribution in the normal and regenerating posterior crista ampullaris of the pigeon. International Journal of Developmental Neuroscience, 18(8), 855–867.

    Article  CAS  PubMed  Google Scholar 

  • Kiernan, A. E., Cordes, R., Kopan, R., Gossler, A., & Gridley, T. (2005a). The Notch ligands DLL1 and JAG2 act synergistically to regulate hair cell development in the mammalian inner ear. Development, 132, 4353–4362.

    Article  CAS  PubMed  Google Scholar 

  • Kiernan, A. E., Pelling, A. L., Leung, K. K., Tang, A. S., et al. (2005b). Sox2 is required for sensory organ development in the mammalian inner ear. Nature, 434, 1031–1035.

    Article  CAS  PubMed  Google Scholar 

  • Klisch, T. J., Xi, Y., Flora, A., Wang, L., Li, W., & Zoghbi, H. Y. (2011). In vivo Atoh1 targetome reveals how a proneural transcription factor regulates cerebellar development. Proceedings of the National Academy of Sciences of the USA, 108, 3288–3293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korrapati, S., Roux, I., Glowatzki, E., & Doetzlhofer, A. (2013). Notch signaling limits supporting cell plasticity in the hair cell-damaged early postnatal murine cochlea. PLoS ONE, 8(8), e73276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft, S., Hsu, C., Brough, D. E., & Staecker, H. (2013). Atoh1 induces auditory hair cell recovery in mice after ototoxic injury. Laryngoscope, 123(4), 992–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku, Y. C., Renaud, N. A., Veile, R. A., Helms, C., et al. (2014). The transcriptome of utricle hair cell regeneration in the avian inner ear. The Journal of Neuroscience, 34(10), 3523–3535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuntz, A. L., & Oesterle, E. C. (1998). Transforming growth factor alpha with insulin stimulates cell proliferation in vivo in adult rat vestibular sensory epithelium. The Journal of Comparative Neurology, 399(3), 413–423.

    Article  CAS  PubMed  Google Scholar 

  • Kuo, B. R., Baldwin, E. M., Layman, W. S., Taketo, M. M., & Zuo, J. (2015). In vivo cochlear hair cell generation and survival by coactivation of β-catenin and Atoh1. The Journal of Neuroscience, 35(30), 10786–10798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai, H. C., Klisch, T. J., Roberts, R., Zoghbi, H. Y., & Johnson, J. E. (2011). In vivo neuronal subtype-specific targets of atoh1 (math1) in dorsal spinal cord. The Journal of Neuroscience, 31, 10859–10871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laine, H., Doetzlhofer, A., Mantela, J., Ylikoski, J., et al. (2007). p19 (Ink4d) and p21 (Cip1) collaborate to maintain the postmitotic state of auditory hair cells, their codeletion leading to DNA damage and p53-mediated apoptosis. The Journal of Neuroscience, 27(6), 1434–1444.

    Article  CAS  PubMed  Google Scholar 

  • Lambert, P. R. (1994). Inner ear hair cell regeneration in a mammal: Identification of a triggering factor. Laryngoscope, 104(6 Pt 1), 701–718.

    CAS  PubMed  Google Scholar 

  • Lanford, P. J., Lan, Y., Jiang, R., Lindsell, C., et al. (1999). Notch signalling pathway mediates hair cell development in mammalian cochlea. Nature Genetics, 21, 289–292.

    Article  CAS  PubMed  Google Scholar 

  • Lanford, P. J., Shailam, R., Norton, C. R., Gridley, T., et al. (2000). Expression of Math1 and HES5 in the cochleae of wildtype and Jag2 mutant mice. Journal of the Association for Research in Otolaryngology, 1(2), 161–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, Y. S., Liu, F., & Segil, N. (2006). A morphogenetic wave of p27Kip1 transcription directs cell cycle exit during organ of Corti development. Development, 133, 2817–2826.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, R. M., Hume, C. R., & Stone, J. S. (2012). Atoh1 expression and function during auditory hair cell regeneration in post-hatch chickens. Hearing Research, 289(1–2), 74–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., & Forge, A. (1997). Morphological evidence for supporting cell to hair cell conversion in the mammalian utricular macula. International Journal of Developmental Neuroscience, 15(4–5), 433–446.

    Article  CAS  PubMed  Google Scholar 

  • Lin, V., Golub, J., Nguyen, T. B., Hume, C., et al. (2011). Inhibition of notch activity promotes non-mitotic regeneration of HCs in the adult mouse utricle. The Journal of Neuroscience, 31, 15329–15339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Z., Dearman, J. A., Cox, B. C., Walters, B. J., et al. (2012a). Age-dependent in vivo conversion of mouse cochlear pillar and Deiters’ cells to immature hair cells by Atoh1 ectopic expression. The Journal of Neuroscience, 32, 6600–6610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Z., Fang, J., Dearman, J., Zhang, L., & Zuo, J. (2012b). In vivo generation of immature inner hair cells in neonatal mouse cochleae by ectopic Atoh1 expression. PLoS ONE 9(2), e89377.

    Article  CAS  Google Scholar 

  • Lombarte, A., Yan, H. Y., Popper, A. N., Chang, J. S., & Platt, C. (1993). Damage and regeneration of hair cell ciliary bundles in a fish ear following treatment with gentamicin. Hearing Research, 64(2), 166–174.

    Article  CAS  PubMed  Google Scholar 

  • Loponen, H., Ylikoski, J., Albrecht, J. H., & Pirvola, U. (2011). Restrictions in cell cycle progression of adult vestibular supporting cells in response to ectopic cyclin D1 expression. PLoS ONE 6(11), e27360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Löwenheim, H., Furness, D. N., Kil, J., Zinn, C., et al. (1999). Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of Corti. Proceedings of the National Academy of Sciences of the USA, 96(7), 4084–4088.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma, E. Y., Rubel, E. W., & Raible, D. W. (2008). Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line. The Journal of Neuroscience, 28(9), 2261–2273.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Q., Anderson, D. J., & Fritzsch, B. (2000). Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. Journal of the Association for Research in Otolaryngology, 1, 129–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maass, J. C., Gu, R., Basch, M. L., Waldhaus, J., et al. (2015). Changes in the regulation of the Notch signaling pathway are temporally correlated with regenerative failure in the mouse cochlea. Frontiers in Cellular Neuroscience, 9, 110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Masetto, S., & Correia, M. J. (1997). Electrophysiological properties of vestibular sensory and supporting cells in the labyrinth slice before and during regeneration. Journal of Neurophysiology, 78(4), 1913–1927.

    CAS  PubMed  Google Scholar 

  • McCullar, J. S., Ty, S., Campbell, S., & Oesterle, E. C. (2010). Activin potentiates proliferation in mature avian auditory sensory epithelium. The Journal of Neuroscience, 30(2), 478–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers, J. R., & Corwin, J. T. (2007). Shape change controls supporting cell proliferation in lesioned mammalian balance epithelium. The Journal of Neuroscience, 27(16), 4313–4325.

    Article  CAS  PubMed  Google Scholar 

  • Mizutari, K., Fujioka, M., Hosoya, M., Bramhall, N., et al. (2013). Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron, 77(1), 58–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montcouquiol, M., & Corwin, J. T. (2001). Brief treatments with forskolin enhance s-phase entry in balance epithelia from the ears of rats. The Journal of Neuroscience, 21(3), 974–982.

    CAS  PubMed  Google Scholar 

  • Morest, D. K., & Cotanche, D. A. (2004). Regeneration of the inner ear as a model of neural plasticity. Journal of Neuroscience Research, 78(4), 455–460.

    Article  CAS  PubMed  Google Scholar 

  • Morsli, H., Choo, D., Ryan, A., Johnson, R., & Wu, D. K. (1998). Development of the mouse inner ear and origin of its sensory organs. The Journal of Neuroscience, 18, 3327–3335.

    CAS  PubMed  Google Scholar 

  • Mulroy, M. J., & Whaley, E. A. (1984). Structural changes in auditory hairs during temporary deafness. Scanning Electron Microscopy, 1984(2), 831–840.

    Google Scholar 

  • Murata, J., Tokunaga, A., Okano, H., & Kubo, T. (2006). Mapping of notch activation during cochlear development in mice: Implications for determination of prosensory domain and cell fate diversification. The Journal of Comparative Neurology, 497, 502–518.

    Article  CAS  PubMed  Google Scholar 

  • Navaratnam, D. S., Su, H. S., Scott, S. P., & Oberholtzer, J. C. (1996). Proliferation in the auditory receptor epithelium mediated by a cyclic AMP-dependent signaling pathway. Nature Medicine, 2(10), 1136–1139.

    Article  CAS  PubMed  Google Scholar 

  • Niemiec, A. J., Raphael, Y., & Moody, D. B. (1994). Return of auditory function following structural regeneration after acoustic trauma: Behavioral measures from quail. Hearing Research, 79(1–2), 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Oesterle, E. C., Tsue, T. T., & Rubel, E. W. (1997). Induction of cell proliferation in avian inner ear sensory epithelia by insulin-like growth factor-I and insulin. The Journal of Comparative Neurology, 380(2), 262–274.

    Article  CAS  PubMed  Google Scholar 

  • Oesterle, E. C., Bhave, S. A., & Coltrera, M. D. (2000). Basic fibroblast growth factor inhibits cell proliferation in cultured avian inner ear sensory epithelia. The Journal of Comparative Neurology, 424(2), 307–326.

    Article  CAS  PubMed  Google Scholar 

  • Oshima, K., Grimm, C. M., Corrales, C. E., Senn, P., et al. (2007). Differential distribution of stem cells in the auditory and vestibular organs of the inner ear. Journal of the Association for Research in Otolaryngology, 8(1), 18–31.

    Article  PubMed  Google Scholar 

  • Palermo, R., Checquolo, S., Bellavia, D., Talora, C., & Screpanti, I. (2014). The molecular basis of notch signaling regulation: A complex simplicity. Current Molecular Medicine, 14, 34–44.

    Article  CAS  PubMed  Google Scholar 

  • Puligilla, C., & Kelley, M. W. (2016). Dual role for Sox2 in specification of sensory competence and regulation of Atoh1 function. Developmental Neurobiology, 77(1), 3–13.

    Article  PubMed  CAS  Google Scholar 

  • Raft, S., Nowotschin, S., Liao, J., & Morrow, B. E. (2004). Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development, 131, 1801–1812.

    Article  CAS  PubMed  Google Scholar 

  • Raft, S., Koundakjian, E. J., Quinones, H., Jayasena, C. S., et al. (2007). Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development, 134, 4405–4415.

    Article  CAS  PubMed  Google Scholar 

  • Raphael, Y. (1992). Evidence for supporting cell mitosis in response to acoustic trauma in the avian inner ear. Journal of Neurocytology, 21(9), 663–671.

    Article  CAS  PubMed  Google Scholar 

  • Raphael, Y., & Altschuler, R. A. (1991). Scar formation after drug-induced cochlear insult. Hearing Research, 51(2), 173–183.

    Article  CAS  PubMed  Google Scholar 

  • Riccomagno, M. M., Martinu, L., Mulheisen, M., Wu, D. K., & Epstein, D. J. (2002). Specification of the mammalian cochlea is dependent on Sonic hedgehog. Genes and Development, 16, 2365–2378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riccomagno, M. M., Takada, S., & Epstein, D. J. (2005). Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes and Development, 19, 1612–1623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberson, D. W., & Rubel, E. W. (1994). Cell division in the gerbil cochlea after acoustic trauma. The American Journal of Otology, 15(1), 28–34.

    CAS  PubMed  Google Scholar 

  • Roberson, D. W., Kreig, C. S., & Rubel, E. W. (1996). Light microscopic evidence that direct transdifferentiation gives rise to new hair cells in regenerating avian auditory epithelium. Auditory Neuroscience, 2, 195–205.

    Google Scholar 

  • Roberson, D. W., Alosi, J. A., & Cotanche, D. A. (2004). Direct transdifferentiation gives rise to the earliest new hair cells in regenerating avian auditory epithelium. Journal of Neuroscience Research, 78(4), 461–471.

    Article  CAS  PubMed  Google Scholar 

  • Roberto, M., & Zito, F. (1988). Scar formation following impulse noise-induced mechanical damage to the organ of Corti. The Journal of Laryngology and Otology, 102(1), 2–9.

    Article  CAS  PubMed  Google Scholar 

  • Romand, R., Chardin, S., & Le Calvez, S. (1996). The spontaneous appearance of hair cell-like cells in the mammalian cochlea following aminoglycoside ototoxicity. NeuroReport, 8(1), 133–137.

    Article  CAS  PubMed  Google Scholar 

  • Romero-Carvajal, A., Navajas Acedo, J., Jiang, L., Kozlovskaja-Gumbrienė, A., et al. (2015). Regeneration of sensory hair cells requires localized interactions between the Notch and Wnt pathways. Developmental Cell, 34(3), 267–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubel, E. W. (1978). Ontogeny of structure and function in the vertebrate auditory system. In Handbook of sensory physiology (pp. 135–237), New York: Springer.

    Google Scholar 

  • Rubel, E. W., Dew, L. A., & Roberson, D. W. (1995). Mammalian vestibular hair cellf regeneration. Science, 267(5198), 701–707.

    Article  CAS  PubMed  Google Scholar 

  • Ruben, R. J. (1967). Development of the inner ear of the mouse: A radioautographic study of terminal mitoses. Acta Oto-Laryngologica Supplementum, 220, 1–44.

    Google Scholar 

  • Rusch, A., Erway, L. C., Oliver, D., Vennstrom, B., & Forrest, D. (1998). Thyroid hormone receptor beta-dependent expression of a potassium conductance in inner hair cells at the onset of hearing. Proceedings of the National Academy of Sciences of the USA, 95, 15758–15762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryals, B. M., & Rubel, E. W. (1988). Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science, 240(4860), 1774–1776.

    Article  CAS  PubMed  Google Scholar 

  • Ryals, B. M., & Westbrook, E. W. (1994). TEM analysis of neural terminals on autoradiographically identified regenerated hair cells. Hearing Research, 72(1–2), 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Ryals, B. M., Dent, M. L., & Dooling, R. J. (2013). Return of function after hair cell regeneration. Hearing Research, 297, 113–120.

    Article  PubMed  Google Scholar 

  • Schimmang, T., & Pirvola, U. (2013). Coupling the cell cycle to development and regeneration of the inner ear. Seminars in Cell and Developmental Biology, 24, 507–513.

    Article  CAS  PubMed  Google Scholar 

  • Schlecker, C., Praetorius, M., Brough, D. E., Presler, R. G. Jr., et al. (2011). Selective atonal gene delivery improves balance function in a mouse model of vestibular disease. Gene Therapy, 18(9), 884–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, F., Cheng, Y. F., Wang, X. L., & Edge, A. S. (2010). Beta-catenin up-regulates Atoh1 expression in neural progenitor cells by interaction with an Atoh1 3′ enhancer. The Journal of Biological Chemistry, 285, 392–400.

    Article  CAS  PubMed  Google Scholar 

  • Shi, F., Hu, L., & Edge, A. S. (2013). Generation of hair cells in neonatal mice by β-catenin overexpression in Lgr5-positive cochlear progenitors. Proceedings of the National Academy of Sciences of the USA, 110(34), 13851–13856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shou, J., Zheng, J. L., & Gao, W. Q. (2003). Robust generation of new hair cells in the mature mammalian inner ear by adenoviral expression of Hath1. Molecular and Cellular Neuroscience, 23(2), 169–179.

    Article  CAS  PubMed  Google Scholar 

  • Slattery, E. L., & Warchol, M. E. (2010). Cisplatin ototoxicity blocks sensory regeneration in the avian inner ear. The Journal of Neuroscience, 30(9), 3473–3481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slattery, E. L., Speck, J. D., & Warchol, M. E. (2009). Epigenetic influences on sensory regeneration: Histone deacetylases regulate supporting cell proliferation in the avian utricle. Journal of the Association for Research in Otolaryngology, 10(3), 341–353.

    Article  PubMed  PubMed Central  Google Scholar 

  • Slowik, A. D., & Bermingham-McDonogh, O. (2013). Hair cell generation by notch inhibition in the adult mammalian cristae. Journal of the Association for Research in Otolaryngology, 14(6), 813–828.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sobkowicz, H. M., August, B. K., & Slapnick, S. M. (1996). Post-traumatic survival and recovery of the auditory sensory cells in culture. Acta Oto-Laryngologica, 116(2), 257–262.

    Article  CAS  PubMed  Google Scholar 

  • Song, J., Yan, H. Y., & Popper, A. N. (1995). Damage and recovery of hair cells in fish canal (but not superficial) neuromasts after gentamicin exposure. Hearing Research, 91(1–2), 63–71.

    Article  CAS  PubMed  Google Scholar 

  • Staecker, H., Praetorius, M., Baker, K., & Brough, D. E. (2007). Vestibular hair cell regeneration and restoration of balance function induced by math1 gene transfer. Otolaryngology and Neurotology, 28(2), 223–231.

    Article  Google Scholar 

  • Steyger, P. S., Burton, M., Hawkins, J. R., Schuff, N. R., & Baird, R. A. (1997). Calbindin and parvalbumin are early markers of non-mitotically regenerating hair cells in the bullfrog vestibular otolith organs. International Journal of Developmental Neuroscience, 15(4–5), 417–432.

    Article  CAS  PubMed  Google Scholar 

  • Stojanova, Z. P., Kwan, T., & Segil, N. (2015). Epigenetic regulation of Atoh1 guides hair cell development in the mammalian cochlea. Development, 142(20), 3529–3536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone, J. S., & Cotanche, D. A. (1994). Identification of the timing of S phase and the patterns of cell proliferation during hair cell regeneration in the chick cochlea. The Journal of Comparative Neurology, 341, 50–67.

    Article  CAS  PubMed  Google Scholar 

  • Stone, J. S., & Rubel, E. W. (1999). Delta1 expression during avian hair cell regeneration. Development, 126, 961–973.

    CAS  PubMed  Google Scholar 

  • Stone, J. S., & Rubel, E. W. (2000). Temporal, spatial, and morphological features of hair cell regeneration in the avian basilar papilla. The Journal of Comparative Neurology, 417, 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Stone, J. S., Choi, Y.-S., Yamashita, H., Woolley, S. M. N., & Rubel, E. W. (1999). Progenitor cell cycling during hair cell regeneration in the vestibular and auditory epithelia of the chick. Journal of Neurocytology, 28, 863–876.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, K., & Yamanaka, S. (2016). A decade of transcription factor-mediated reprogramming to pluripotency. Nature Reviews Molecular and Cellular Biology, 17, 183–193.

    Article  CAS  Google Scholar 

  • Taylor, R. R., & Forge, A. (2005). Hair cell regeneration in sensory epithelia from the inner ear of a urodele amphibian. The Journal of Comparative Neurology, 484(1), 105–120.

    Article  PubMed  Google Scholar 

  • Taylor, R. R., Jagger, D. J., Saeed, S. R., Axon, P., et al. (2015). Characterizing human vestibular sensory epithelia for experimental studies: New hair bundles on old tissue and implications for therapeutic interventions in ageing. Neurobiology of Aging, 36(6), 2068–2084.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ushakov, K., Rudnicki, A., & Avraham, K. B. (2013). MicroRNAs in sensorineural diseases of the ear. Frontiers in Molecular Neuroscience, 6, 52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wallis, D., Hamblen, M., Zhou, Y., Venken, K. J., et al. (2003). The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development, 130, 221–232.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T., Chai, R., Kim, G. S., Pham, N., et al. (2015). Lgr5+ cells regenerate hair cells via proliferation and direct transdifferentiation in damaged neonatal mouse utricle. Nature Communications, 6, 6613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Hirose, K., & Liberman, M. C. (2002). Dynamics of noise-induced cellular injury and repair in the mouse cochlea. Journal of the Association for Research in Otolaryngology, 3(3), 248–268.

    Article  PubMed  PubMed Central  Google Scholar 

  • Warchol, M. E. (1999). Immune cytokines and dexamethasone influence sensory regeneration in the avian vestibular periphery. Journal of Neurocytology, 28(10–11), 889–900.

    Article  CAS  PubMed  Google Scholar 

  • Warchol, M. E., & Corwin, J. T. (1996). Regenerative proliferation in organ cultures of the avian cochlea: Identification of the initial progenitors and determination of the latency of the proliferative response. The Journal of Neuroscience, 16(17), 5466–5477.

    CAS  PubMed  Google Scholar 

  • Warchol, M. E., Lambert, P. R., Goldstein, B. J., Forge, A., & Corwin, J. T. (1993). Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science, 259(5101), 1619–22.

    Article  CAS  PubMed  Google Scholar 

  • Weber, T., Zimmermann, U., Winter, H., Mack, A., et al. (2002). Thyroid hormone is a critical determinant for the regulation of the cochlear motor protein prestin. Proceedings of the National Academy of Sciences of the USA, 99, 2901–2906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisleder, P., & Rubel, E. W. (1993). Hair cell regeneration after streptomycin toxicity in the avian vestibular epithelium. The Journal of Comparative Neurology, 331(1), 97–110.

    Article  CAS  PubMed  Google Scholar 

  • White, P. M., Doetzlhofer, A., Lee, Y. S., Groves, A. K., & Segil, N. (2006). Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature, 441(7096), 984–987.

    Article  CAS  PubMed  Google Scholar 

  • White, P. M., Stone, J. S., Groves, A. K., & Segil, N. (2012). EGFR signaling is required for regenerative proliferation in the cochlea: Conservation in birds and mammals. Developmental Biology, 363(1), 191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, J. A., & Holder, N. (2000). Cell turnover in neuromasts of zebrafish larvae. Hearing Research, 143(1–2), 171–181.

    Article  CAS  PubMed  Google Scholar 

  • Winter, H., Braig, C., Zimmermann, U., Geisler, H. S., et al. (2006). Thyroid hormone receptors TRalpha1 and TRbeta differentially regulate gene expression of Kcnq4 and prestin during final differentiation of outer hair cells. Journal of Cell Science, 119, 2975–2984.

    Article  CAS  PubMed  Google Scholar 

  • Witte, M. C., Montcouquiol, M., & Corwin, J. T. (2001). Regeneration in avian hair cell epithelia: Identification of intracellular signals required for S-phase entry. European Journal of Neuroscience, 14(5), 829–838.

    Article  CAS  PubMed  Google Scholar 

  • Woods, C., Montcouquiol, M., & Kelley, M. W. (2004). Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nature Neuroscience, 7, 1310–1318.

    Article  CAS  PubMed  Google Scholar 

  • Wu, D. K., & Kelley, M. W. (2012). Molecular mechanisms of inner ear development. Cold Spring Harbor Perspectives in Biology, 4, a008409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu, J. C., Huang, D. L., Hou, Z. H., Guo, W. W., et al. (2012). Type I hair cell regeneration induced by Math1 gene transfer following neomycin ototoxicity in rat vestibular sensory epithelium. Acta Oto-laryngologica, 132(8), 819–828.

    CAS  PubMed  Google Scholar 

  • Xu, P. X., Adams, J., Peters, H., Brown, M. C., et al. (1999). Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nature Genetics, 23, 113–117.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, N., Tanigaki, K., Tsuji, M., Yabe, D., et al. (2006). Inhibition of Notch/RBP-J signaling induces hair cell formation in neonate mouse cochleas. Journal of Molecular Medicine (Berlin), 84(1), 37–45.

    Google Scholar 

  • Yamashita, H., & Oesterle, E. C. (1995). Induction of cell proliferation in mammalian inner-ear sensory epithelia by transforming growth factor alpha and epidermal growth factor. Proceedings of the National Academy of Sciences of the USA, 92(8), 3152–2155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, S. M., Chen, W., Guo, W. W., Jia, S., et al. (2012). Regeneration of stereocilia of hair cells by forced Atoh1 expression in the adult mammalian cochlea. PLoS ONE, 7(9), e46355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, N., Martin, G. V., Kelley, M. W., & Gridley, T. (2000). A mutation in the Lunatic fringe gene suppresses the effects of a Jagged2 mutation on inner hair cell development in the cochlea. Current Biology, 10, 659–662.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., & Cui, W. (2014). Sox2, a key factor in the regulation of pluripotency and neural differentiation. World Journal of Stem Cells, 6, 305–311.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng, J. L., & Gao, W. Q. (1996). Differential damage to auditory neurons and hair cells by ototoxins and neuroprotection by specific neurotrophins in rat cochlear organotypic cultures. European Journal of Neuroscience, 8(9), 1897–1905.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, J. L., & Gao, W. Q. (2000). Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nature Neuroscience, 3, 580–586.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, J. L., Helbig, C., & Gao, W. Q. (1997). Induction of cell proliferation by fibroblast and insulin-like growth factors in pure rat inner ear epithelial cell cultures. The Journal of Neuroscience, 17(1), 216–226.

    CAS  PubMed  Google Scholar 

  • Zheng, J. L., Keller, G., & Gao, W. Q. (1999a). Immunocytochemical and morphological evidence for intracellular self-repair as an important contributor to mammalian hair cell recovery. The Journal of Neuroscience, 19(6), 2161–2170.

    CAS  PubMed  Google Scholar 

  • Zheng, J. L., Frantz, G., Lewis, A. K., Sliwkowski, M., & Gao, W. Q. (1999b). Heregulin enhances regenerative proliferation in postnatal rat utricular sensory epithelium after ototoxic damage. Journal of Neurocytology, 28(10–11), 901–912.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, W., Huang, L., Wei, Z. B., Silvius, D., et al. (2003). The role of Six1 in mammalian auditory system development. Development, 130, 3989–4000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zine, A., Aubert, A., Qiu, J., Therianos, S., et al. (2001). Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear. The Journal of Neuroscience, 21, 4712–4720.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Edwin W Rubel as an exceptional mentor, colleague, and friend, and as one of the pioneers in the fields of both inner development and regeneration. The authors would also like to apologize for the many relevant references that were necessarily omitted because of space limitations.

Compliance with Ethics Requirements

Jennifer Stone declares that she has no conflict of interest.

Matthew Kelley declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer S. Stone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kelley, M.W., Stone, J.S. (2017). Development and Regeneration of Sensory Hair Cells. In: Cramer, K., Coffin, A., Fay, R., Popper, A. (eds) Auditory Development and Plasticity. Springer Handbook of Auditory Research, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-319-21530-3_2

Download citation

Publish with us

Policies and ethics