Skip to main content

Statistical Data Analysis and Modeling

  • Chapter
  • First Online:
Uncertainty in Biology

Abstract

The availability of large structured datasets has prompted the need for efficient data analysis and modeling techniques. In systems biology, data-driven modeling approaches create models of complex cellular systems without making assumptions about the underlying mechanisms. In this chapter, we will discuss eigenvalue-based approaches, which identify important characteristics (information) of big datasets through decomposition and dimensionality reduction. We intend to address singular value decomposition (SVD), principle component analysis (PCA), and partial least squares regression (PLSR) approaches for data-driven modeling. In multi-linear systems (that share characteristics such as time points, measurements, etc.), tensor decomposition becomes particularly important for understanding higher-order datasets. Therefore, we will also discuss how to scale up these methods to tensor decomposition using an example dealing with host-cell responses to viral infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albeck, J.G., Burke, J.M., Spencer, S.L., Lauffenburger, D.A., Sorger, P.K.: Modeling a snap-action, variable-delay switch controlling extrinsic cell death. PLoS Biol. 6(12), 2831–2852 (2008). doi:10.1371/journal.pbio.0060299 (07-PLBI-RA-3412 [pii])

  2. Albeck, J.G., MacBeath, G., White, F.M., Sorger, P.K., Lauffenburger, D.A., Gaudet, S.: Collecting and organizing systematic sets of protein data. Nat. Rev. Mol. Cell Biol. 7(11), 803–812 (2006)

    Article  Google Scholar 

  3. Aldridge, B.B., Saez-Rodriguez, J., Muhlich, J.L., Sorger, P.K., Lauffenburger, D.A.: Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/insulin-induced signaling. PLoS Comput. Biol. 5(4), e1000340 (2009). doi:10.1371/journal.pcbi.1000340

    Article  Google Scholar 

  4. Alter, O., Brown, P.O., Botstein, D.: Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. U.S.A. 97(18), 10101–10106 (2000)

    Article  Google Scholar 

  5. Alter, O.: Genomic signal processing: from matrix algebra to genetic networks. Methods Mol. Biol. 377, 17–60 (2007). doi:10.1007/978-1-59745-390-5_2

    Article  Google Scholar 

  6. Andersson, C.A., Bro, R.: The N-way toolbox for MATLAB. Chemometr. Intell. Lab. Syst. 52(1), 1–4 (2000). doi:10.1016/S0169-7439(00)00071-X

    Google Scholar 

  7. Beyer, E.M., MacBeath, G.: Cross-talk between receptor tyrosine kinase and tumor necrosis factor-alpha signaling networks regulates apoptosis but not proliferation. [Research Support, N.I.H., Extramural]. Mol. Cell. Proteomics 11(6), M111.013292. doi:10.1074/mcp.M111.013292

    Google Scholar 

  8. Bro, R.: PARAFAC. Tutorial and applications. Chemometr. Intell. Lab. Syst. 38, 149–171 (1997)

    Article  Google Scholar 

  9. Bro, R., Kiers, H.A.L.: A new efficient method for determining the number of components in PARAFAC models. J. Chemometr. 17, 274–286 (2003)

    Article  Google Scholar 

  10. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an N-way generalization of ‘Eckart-Young’ decomposition. Psychometrika 35, 283–319 (1970)

    Article  MATH  Google Scholar 

  11. Chen, W.W., Schoeberl, B., Jasper, P.J., Niepel, M., Nielsen, U.B., Lauffenburger, D.A., Sorger, P.K.: Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol. Syst. Biol. 5, 239 (2009)

    Google Scholar 

  12. Crescenzi, M., Giuliani, A.: The main biological determinants of tumor line taxonomy elucidated by a principal component analysis of microarray data. FEBS Lett. 507(1), 114–118 (2001)

    Article  Google Scholar 

  13. Dworkin, M., Mukherjee, S., Jayaprakash, C., Das, J.: Dramatic reduction of dimensionality in large biochemical networks owing to strong pair correlations [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. J. R. Soc. Interface 9(73), 1824–1835 (2012). doi:10.1098/rsif.2011.0896

    Article  Google Scholar 

  14. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman and Hall, London (1993)

    Book  MATH  Google Scholar 

  15. Esfandiarei, M., McManus, B.M.: Molecular biology and pathogenesis of viral myocarditis. Annu. Rev. Pathol. 3, 127–155 (2008). doi:10.1146/annurev.pathmechdis.3.121806.151534

    Article  Google Scholar 

  16. Gaudet, S., Janes, K.A., Albeck, J.G., Pace, E.A., Lauffenburger, D.A., Sorger, P.K.: A compendium of signals and responses triggered by prodeath and prosurvival cytokines. Mol. Cell Proteomics 4(10), 1569–1590 (2005)

    Article  Google Scholar 

  17. Geladi, P., Kowalski, B.R.: Partial least-squares regression—a tutorial. Anal. Chim. Acta. 185, 1–17 (1986)

    Article  Google Scholar 

  18. Gutenkunst, R.N., Waterfall, J.J., Casey, F.P., Brown, K.S., Myers, C.R., Sethna, J.P.: Universally sloppy parameter sensitivities in systems biology models [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. PLoS Comput. Biol. 3(10), 1871–1878 (2007). doi:10.1371/journal.pcbi.0030189

    MathSciNet  Google Scholar 

  19. Hoffmann, A., Levchenko, A., Scott, M.L., Baltimore, D.: The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298(5596), 1241–1245 (2002)

    Article  Google Scholar 

  20. Hu, J., Locasale, J.W., Bielas, J.H., O’Sullivan, J., Sheahan, K., Cantley, L.C., Vitkup, D.: Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat. Biotechnol. 31(6), 522–529 (2013). doi:10.1038/nbt.2530

    Article  Google Scholar 

  21. Hug, S., Schmidl, D., Li, W.B., Greiter, M.B., Theis, F.J.: Bayesian model selection methods and their application to biological ODE systems. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Cham (2016, this volume)

    Google Scholar 

  22. Janes, K.A., Albeck, J.G., Gaudet, S., Sorger, P.K., Lauffenburger, D.A., Yaffe, M.B.: A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310(5754), 1646–1653 (2005)

    Article  Google Scholar 

  23. Janes, K.A., Lauffenburger, D.A.: A biological approach to computational models of proteomic networks. Curr. Opin. Chem. Biol. 10(1), 73–80 (2006)

    Article  Google Scholar 

  24. Janes, K.A., Lauffenburger, D.A.: Models of signalling networks—what cell biologists can gain from them and give to them [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. J. Cell. Sci. 126(Pt 9), 1913–1921 (2013). doi:10.1242/jcs.112045

    Article  Google Scholar 

  25. Janes, K.A., Yaffe, M.B.: Data-driven modelling of signal-transduction networks. Nat. Rev. Mol. Cell. Biol. 7(11), 820–828 (2006)

    Article  Google Scholar 

  26. Jeffers, J.: Two case studies in the application of principal component analysis. J. Roy. Stat. Soc. 16(3), 225–236 (1967)

    Google Scholar 

  27. Jensen, K.J., Garmaroudi, F.S., Zhang, J., Lin, J., Boroomand, S., Zhang, M., Janes, K.A.: An ERK-p38 subnetwork coordinates host cell apoptosis and necrosis during coxsackievirus B3 infection [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Cell Host Microbe 13(1), 67–76 (2013). doi:10.1016/j.chom.2012.11.009

    Article  Google Scholar 

  28. Jensen, K.J., Janes, K.A.: Modeling the latent dimensions of multivariate signaling datasets. Phys. Biol. 9(4), 045004 (2012). doi:10.1088/1478-3975/9/4/045004

    Article  Google Scholar 

  29. Jolliffe, I.T.: Principal Component Analysis. Springer Series in Statistic

    Google Scholar 

  30. Kemp, M.L., Wille, L., Lewis, C.L., Nicholson, L.B., Lauffenburger, D.A.: Quantitative network signal combinations downstream of TCR activation can predict IL-2 production response. J. Immunol. 178(8), 4984–4992 (2007)

    Article  Google Scholar 

  31. Kirk, P., Silk, D., Stumpf, M.P.H.: Reverse engineering under uncertainty, In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Cham (2016, this volume)

    Google Scholar 

  32. Kolda T.G., Bader, B.B.: Tensor Decompositions and Applications. Sandia National Laboratories Report, SAND2007-6702 (2007)

    Google Scholar 

  33. Kreeger, P.K.: Using partial least squares regression to analyze cellular response data. Sci. Signal 6(271), tr7 (2013). doi:10.1126/scisignal.2003849

    Google Scholar 

  34. Kreeger, P.K., Mandhana, R., Alford, S.K., Haigis, K.M., Lauffenburger, D.A.: RAS mutations affect tumor necrosis factor-induced apoptosis in colon carcinoma cells via ERK-modulatory negative and positive feedback circuits along with non-ERK pathway effects. Cancer Res. 69(20), 8191–8199 (2009). doi:10.1158/0008-5472.CAN-09-1921 (0008-5472.CAN-09-1921 [pii])

  35. Krogh, A.: What are artificial neural networks? Nat. Biotechnol. 26(2), 195–197 (2008)

    Article  Google Scholar 

  36. Kumar, D., Srikanth, R., Ahlfors, H., Lahesmaa, R., Rao, K.V.: Capturing cell-fate decisions from the molecular signatures of a receptor-dependent signaling response. Mol. Syst. Biol. 3, 150 (2007)

    Article  Google Scholar 

  37. Kumar, N., Wolf-Yadlin, A., White, F.M., Lauffenburger, D.A.: Modeling HER2 effects on cell behavior from mass spectrometry phosphotyrosine data. PLoS Comput. Biol. 3(1), e4 (2007)

    Article  Google Scholar 

  38. Lau, K.S., Juchheim, A.M., Cavaliere, K.R., Philips, S.R., Lauffenburger, D.A., Haigis, K.M.: In vivo systems analysis identifies spatial and temporal aspects of the modulation of TNF-alpha-induced apoptosis and proliferation by MAPKs. Sci. Signal 4(165), ra16 (2011). doi:10.1126/scisignal.2001338 (4/165/ra16 [pii])

  39. Lee, M.J., Ye, A.S., Gardino, A.K., Heijink, A.M., Sorger, P.K., Macbeath, G., Yaffe, M.B.: Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149(4), 780–794 (2012). doi:10.1016/j.cell.2012.03.031

    Article  Google Scholar 

  40. Martens, H., Martens, M.: Analysis of one data table X: principal component analysis multivariate analysis of quality: an introduction, 1st edn, pp. 93–110. Wiley, New York (2001)

    Google Scholar 

  41. Miller-Jensen, K., Janes, K.A., Brugge, J.S., Lauffenburger, D.A.: Common effector processing mediates cell-specific responses to stimuli. Nature 448(7153), 604–608 (2007)

    Article  Google Scholar 

  42. Misra, J., Schmitt, W., Hwang, D., Hsiao, L.L., Gullans, S., Stephanopoulos, G., Stephanopoulos, G.: Interactive exploration of microarray gene expression patterns in a reduced dimensional space. Genome. Res. 12(7), 1112–1120 (2002). doi:10.1101/gr.225302

    Article  Google Scholar 

  43. Nakakuki, T., Birtwistle, M.R., Saeki, Y., Yumoto, N., Ide, K., Nagashima, T., Kholodenko, B. N.: Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Cell 141(5), 884–896 (2010). doi:10.1016/j.cell.2010.03.054

    Google Scholar 

  44. Noble, W.S.: What is a support vector machine? Nat. Biotechnol. 24(12), 1565–1567 (2006)

    Article  MathSciNet  Google Scholar 

  45. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. 2, 559–572 (1901)

    Article  Google Scholar 

  46. Saez-Rodriguez, J., Alexopoulos, L.G., Epperlein, J., Samaga, R., Lauffenburger, D.A., Klamt, S., Sorger, P.K.: Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol. Syst. Biol. 5, 331 (2009). doi:10.1038/msb.2009.87 (msb200987 [pii])

  47. Schlens, J.: A tutorial on principal component analysis: derivation, discussion, and singular value decomposition. http://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf. Accessed 1 Aug 2013

  48. Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., Muller, G.: Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. 20(4), 370–375 (2002)

    Article  Google Scholar 

  49. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9(12), 3273–3297 (1998)

    Article  Google Scholar 

  50. Sunnåker, M., Stelling, J.: Model extension and model selection. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Cham (2016, this volume)

    Google Scholar 

  51. Tentner, A.R., Lee, M.J., Ostheimer, G.J., Samson, L.D., Lauffenburger, D.A., Yaffe, M.B.: Combined experimental and computational analysis of DNA damage signaling reveals context-dependent roles for Erk in apoptosis and G1/S arrest after genotoxic stress [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Mol. Syst. Biol. 8, 568 (2012). doi:10.1038/msb.2012.1

    Article  Google Scholar 

  52. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  53. Vilela, M., Danuser, G.: What’s wrong with correlative experiments? Nat. Cell. Biol. 13(9), 1011 (2011). doi:10.1038/ncb2325

    Article  Google Scholar 

  54. Whitton, J.L., Cornell, C.T., Feuer, R.: Host and virus determinants of picornavirus pathogenesis and tropism. Nat. Rev. Microbiol. 3(10), 765–776 (2005). doi:10.1038/nrmicro1284

    Article  Google Scholar 

  55. Wiley, H.S., Shvartsman, S.Y., Lauffenburger, D.A.: Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell. Biol. 13(1), 43–50 (2003)

    Article  Google Scholar 

  56. Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15(2), 265–286 (2006). doi:10.1198/106186006x113430

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin A. Janes .

Editor information

Editors and Affiliations

Conflict of Interest

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shah, M., Chitforoushzadeh, Z., Janes, K.A. (2016). Statistical Data Analysis and Modeling. In: Geris, L., Gomez-Cabrero, D. (eds) Uncertainty in Biology. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-21296-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21296-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21295-1

  • Online ISBN: 978-3-319-21296-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics