Skip to main content

The Method of Guaranteeing the Separation Between the Recognised Object and Background

  • Chapter
  • First Online:
Book cover Innovative Simulation Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 33))

  • 948 Accesses

Abstract

The aim of the following study was to develop a procedure which guarantees the separation between the part of an image where we have the recognised object and the part of the image which corresponds to the terrain where the object moves. This research is conducted for grey scale images. The authors have presented the method which uses moment invariants for creating feature vectors which define the features of the recognised object and the features of the background. The presented method is based on calculating the distance between the values of invariant functions calculated for an object and the background. The distances were calculated for all moment invariants. These moment invariants were elements of the feature vector. In the next step the elements of the feature vector were ordered according to the values of these distances—from lowest to highest. Finally, the moment invariants, for which the distances were highest, were chosen as elements of a new—shorter feature vector. Furthermore, the algorithm of creating features vector was presented in the following paper. The developed algorithm allows to assess if a given invariant function is useful for the classification of the elements of a given set of classes. Owing to this approach, it was possible to choose properly the invariant functions which constitute the features vector. On the one hand, we can decrease the size of the features vector by choosing the invariant functions which separate particular classes in the best way. On the other hand, we know which function is the most proper to be added to the features vector when the size of the features vector is too small. On top of that, this study presents the example of recognising the object moving in some kind of a terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bibik, P., Narkiewicz, J.: Helicopter optimal control after power failure using comprehensive dynamic model. J. Guid. Control Dyn. 35, 1354–1362 (2012)

    Article  Google Scholar 

  2. Bibik, P., Narkiewicz, J.: Helicopter modeling and optimal control in autorotation. In: Annual Proceedings—American Helicopter Society, vol. 64, no. 2, pp. 986 (2008)

    Google Scholar 

  3. Davies, D., Palmer, P.L., Mirmehdi, M.: Detection and tracking of very small low contrast objects. In: Proceedings of the 9th British Machine Vision Conference, Sept 1998

    Google Scholar 

  4. Zhang, S., Karim, M.A.: Automatic target tracking for video annotation. Op. Eng. 43, 1867–1873 (2004)

    Article  Google Scholar 

  5. Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP Graph Models Image Process. 53, 231–239 (1991)

    Article  Google Scholar 

  6. Chesnaud, C., Refegier, P., Boulet, V.: Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans. Patt. Anal. Mach. Intell. 21, 1145–1157 (1999)

    Article  Google Scholar 

  7. Gordon, N., Ristic, B., Arulampalam, S.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House, Boston (2004)

    Google Scholar 

  8. Sharp, C., Shakernia, O., Sastry, S.: A vision system for landing an unmanned aerial vehicle. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1720–1727. IEEE, Los Alamitos (2001)

    Google Scholar 

  9. Casbeer, D., Li, S., Beard, R., Mehra, R., McLain, T.: Forest fire monitoring with multiple small UAVs, Portland, OR, Apr 2005

    Google Scholar 

  10. Papoulis, A.: Probability, Random Variables, and Stochastic Processes, 3rd edn. McGraw-Hill, New York (1991)

    Google Scholar 

  11. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision. Thompson, Stamford (2008)

    Google Scholar 

  12. Babiarz, A., Bieda, R., Jaskot, K.: Vision system for group of mobile robots. In: Vision Based Systems for UAV Applications. Studies in Computational Intelligence, vol. 481, pp. 139–156 (2013). ISBN: 978-3-319-00368-9

    Google Scholar 

  13. Ryt, A., Sobel, D., Kwiatkowski, J., Domzal, M., Jedrasiak, K., Nawrat, A.: Real-time laser point tracking. In: Computer Vision and Graphics. Lecture Notes in Computer Science, vol. 8671. pp. 542–551 (2014)

    Google Scholar 

  14. Nawrat, A., Jedrasiak, K.: Fast colour recognition algorithm for robotics. In: Problemy Eksploatacji, pp. 69–76 (2008)

    Google Scholar 

  15. Jedrasiak, K., Nawrat, A., Daniec, K., Koteras, R., Mikulski, M., Grzejszczak, T.: A prototype device for concealed weapon detection using IR and CMOS cameras fast image fusion. In: Computer Vision and Graphics. Lecture Notes in Computer Science, vol. 7594, pp. 423–432 (2012)

    Google Scholar 

  16. Bieda, R., Grygiel, R.: Wyznaczanie Orientacji Obiektu w Przestrzeni z Wykorzystaniem Naiwnego Filtru Kalmana. Przeglad Elektrotechniczny 90, 34–41 (2014)

    Google Scholar 

  17. Galuszka, A., Bereska, D., Simek, K., Skrzypczyk, K., Daniec, K.: Wykorzystanie Elementów Teorii Grafów w Systemie Analiz Kryminalnych. Przeglad Elektrotechniczny 86, 278–283 (2010)

    Google Scholar 

  18. Daniec, K., Jedrasiak, K., Koteras, R., Nawrat, A.: Embedded micro inertial navigation system. Appl. Mech. Mater. 249, 1234–1246 (2013)

    Google Scholar 

  19. Barnat, W., Niezgota, T., Panowicz, R., Sybilski, K.: The influence of conical composite filling on energy absorbtion during the progressive fracture process. WIT Trans. Model. Simul. 51, 625–633 (2011)

    Google Scholar 

  20. Bereska, D., Daniec, K., Fras, S., Jedrasiak, K., Malinowski, M., Nawrat, A.: System for multi-axial mechanical stabilization of digital camera. Vision Based Systems for UAV Applications. Studies in Computational Intelligence, vol. 481, pp. 117–189 (2013). ISBN: 978-3-319-00368-9, 2013

    Google Scholar 

  21. Sroka, M., Sciegienka, P., Babiarz, A., Jaskot, K.: Prototyp bezzalogowego pojazdu podwodnego - uklad stabilizacji i utrzymania zadanego kursu. Przeglad Elektrotechniczny 89, 205–217 (2013)

    Google Scholar 

  22. Jaskot, K., Babiarz, A., Sroka, M., Sciegienka, P.: Prototyp bezzalogowego pojazdu podwodnego - konstrukcja mechaniczna, panel operatora. Przeglad Elektrotechniczny 89, 52–67 (2013)

    Google Scholar 

  23. Babiarz, A., Bieda, R., Jedrasiak, K., Nawrat, A.: Machine vision in autonomous systems of detection and location of objects in digital images. In: Vision Based Systems for UAV Applications. Studies in Computational Intelligence, vol. 481, pp. 3–25 (2013). ISBN: 978-3-319-00368-9

    Google Scholar 

  24. Grzejszczak, T., Mikulski, M., Szkodny, T., Jedrasiak, K.: Gesture based robot control. In: Computer Vision and Graphics. Lecture Notes in Computer Science, vol. 7594, pp. 407–413 (2012)

    Google Scholar 

  25. Jedrasiak, K., Andrzejczak, M., Nawrat, A.: SETh: the method for long-term object tracking. In: Computer Vision and Graphics, Lecture Notes in Computer Science, vol. 8671, pp. 302–315 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zygmunt Kuś .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuś, Z., Nawrat, A. (2016). The Method of Guaranteeing the Separation Between the Recognised Object and Background. In: Nawrat, A., Jędrasiak, K. (eds) Innovative Simulation Systems. Studies in Systems, Decision and Control, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-21118-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21118-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21117-6

  • Online ISBN: 978-3-319-21118-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics