Skip to main content

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

Water-related disasters such as tsunamis, storm surges, and floods involve fluid–structure interaction (FSI) problems with free surface flow. Since failures of artifacts are caused due to inundation, water forces and impact forces by floating objects, simulation of such problems has great importance to design for safety and robustness.In this chapter, we present a robust and efficient coupled method for fluid–structure interaction with violent free surface flow, named the MPS-FE method and its improved method. The MPS-FE method adopts the finite element (FE) method for structure computation and the moving particle semi-implicit/simulation (MPS) method for fluid computation involving free surface flow. The conventional MPS-FE method, in which MPS wall boundary particles and finite elements are overlapped in order to exchange information at fluid–structure interface, is not versatile and reduces the advantages of software modularity. We developed a non-overlapping approach in which the interface in the fluid computation corresponds to that in the structure computation through an MPS polygon wall model. The accuracy of the improved MPS-FE method was verified by solving a dam break problem with an elastic obstacle and by comparing the result obtained with that of the conventional MPS-FE method and other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adventure project: Development of computational mechanics system for large scale analysis and design. http://adventure.sys.t.u-tokyo.ac.jp/

  2. Aktay, L., Johnson, A.F.: Fem/sph coupling technique for high velocity impact simulations. In: Advances in Meshfree Techniques, pp. 147–167. Springer, New York (2007)

    Google Scholar 

  3. Aliabadi, S.K., Tezduyar, T.E.: Space-time finite element computation of compressible flows involving moving boundaries and interfaces. Comput. Methods Appl. Mech. Eng. 107(1), 209–223 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Antoci, C., Gallati, M., Sibilla, S.: Numerical simulation of fluid–structure interaction by SPH. Comput. Struct. 85(11), 879–890 (2007)

    Article  Google Scholar 

  5. Attaway, S., Heinstein, M., Swegle, J.: Coupling of smooth particle hydrodynamics with the finite element method. Nucl. Eng. Des. 150(2), 199–205 (1994)

    Article  Google Scholar 

  6. Bazilevs, Y., Calo, V., Hughes, T., Zhang, Y.: Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput. Mech. 43(1), 3–37 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blom, F.J.: A monolithical fluid-structure interaction algorithm applied to the piston problem. Comput. Methods Appl. Mech. Eng. 167(3), 369–391 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brooks, A.N., Hughes, T.J.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-stokes equations. Comput. Methods Appl. Mech. Eng. 32(1), 199–259 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chikazawa, Y., Koshizuka, S., Oka, Y.: A particle method for elastic and visco-plastic structures and fluid-structure interactions. Comput. Mech. 27(2), 97–106 (2001)

    Article  MATH  Google Scholar 

  10. Chorin, A.J.: Numerical solution of the Navier-stokes equations. Math. Comput. 22(104), 745–762 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  11. Crespo, A., Gómez-Gesteira, M., Dalrymple, R.A.: 3d sph simulation of large waves mitigation with a dike. J. Hydraul. Res. 45(5), 631–642 (2007)

    Article  Google Scholar 

  12. De Vuyst, T., Vignjevic, R., Campbell, J.: Coupling between meshless and finite element methods. Int. J. Impact Eng. 31(8), 1054–1064 (2005)

    Article  Google Scholar 

  13. Delorme, L., Colagrossi, A., Souto-Iglesias, A., Zamora-Rodriguez, R., Botia-Vera, E.: A set of canonical problems in sloshing, part i: Pressure field in forced roll–comparison between experimental results and sph. Ocean Eng. 36(2), 168–178 (2009)

    Article  Google Scholar 

  14. Farhat, C., Lesoinne, M.: Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Computer Methods Appl. Mech. Eng. 182(3), 499–515 (2000)

    Article  MATH  Google Scholar 

  15. Fedkiw, S.O.R.: Level Set Methods and Dynamic Implicit Surfaces (2003)

    MATH  Google Scholar 

  16. Felippa, C.A., Park, K., Farhat, C.: Partitioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Eng. 190(24), 3247–3270 (2001)

    Article  MATH  Google Scholar 

  17. Ferrari, A., Dumbser, M., Toro, E.F., Armanini, A.: A new 3d parallel sph scheme for free surface flows. Comput. Fluids 38(6), 1203–1217 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fourey, G., Oger, G., Le Touzé, D., Alessandrini, B.: Violent fluid-structure interaction simulations using a coupled sph/fem method. In: IOP Conference Series: Materials Science and Engineering, vol. 10, p. 012041. IOP Publishing, Bristol (2010)

    Google Scholar 

  19. Franca, L.P., Frey, S.L.: Stabilized finite element methods: II. The incompressible Navier-stokes equations. Comput. Methods Appl. Mech. Eng. 99(2), 209–233 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Franca, L.P., Frey, S.L., Hughes, T.J.: Stabilized finite element methods: I. Application to the advective-diffusive model. Comput. Methods Appl. Mech. Eng. 95(2), 253–276 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(3), 375–389 (1977)

    Article  MATH  Google Scholar 

  22. Groenenboom, P.H., Cartwright, B.K.: Hydrodynamics and fluid-structure interaction by coupled sph-fe method. J. Hydraul. Res. 48(S1), 61–73 (2010)

    Article  Google Scholar 

  23. Harada, T., Koshizuka, S., Shimazaki, K.: Improvement of wall boundary calculation model for MPS method. Trans. Jpn. Soc. Comput. Eng. Sci. (20080006) (2008) (in Japanese)

    Google Scholar 

  24. Hirt, C.W., Nichols, B.D.: Volume of fluid (vof) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    Article  MATH  Google Scholar 

  25. Hu, X., Adams, N.A.: An incompressible multi-phase sph method. J. Comput. Phys. 227(1), 264–278 (2007)

    Article  MATH  Google Scholar 

  26. Hu, D., Long, T., Xiao, Y., Han, X., Gu, Y.: Fluid–structure interaction analysis by coupled fe–sph model based on a novel searching algorithm. Comput. Methods Appl. Mech. Eng. 276, 266–286 (2014)

    Article  MathSciNet  Google Scholar 

  27. Hübner, B., Walhorn, E., Dinkler, D.: A monolithic approach to fluid–structure interaction using space–time finite elements. Comput. Methods Appl. Mech. Eng. 193(23), 2087–2104 (2004)

    Article  MATH  Google Scholar 

  28. Hwang, S.C., Khayyer, A., Gotoh, H., Park, J.C.: Development of a fully lagrangian MPS-based coupled method for simulation of fluid–structure interaction problems. J. Fluids Struct. 50, 497–511 (2014)

    Article  Google Scholar 

  29. Idelsohn, S.R., Oñate, E., Pin, F.D.: The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int. J. Numer. Methods Eng. 61(7), 964–989 (2004)

    Article  MATH  Google Scholar 

  30. Idelsohn, S., Oñate, E., Pin, F.D., Calvo, N.: Fluid–structure interaction using the particle finite element method. Comput. Methods Appl. Mech. Eng. 195(17), 2100–2123 (2006)

    Article  MATH  Google Scholar 

  31. Idelsohn, S.R., Marti, J., Limache, A., Oñate, E.: Unified lagrangian formulation for elastic solids and incompressible fluids: application to fluid–structure interaction problems via the pfem. Comput. Methods Appl. Mech. Eng. 197(19), 1762–1776 (2008)

    Article  MATH  Google Scholar 

  32. Johnson, G.R.: Linking of lagrangian particle methods to standard finite element methods for high velocity impact computations. Nucl. Eng. Des. 150(2), 265–274 (1994)

    Article  Google Scholar 

  33. Khayyer, A., Gotoh, H.: Enhancement of stability and accuracy of the moving particle semi-implicit method. J. Comput. Phys. 230(8), 3093–3118 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kohei, M., Oochi, M., Fujisawa, T., Koshizuka, S., Yoshimura, S.: Distributed memory parallel algorithm for explicit MPS using ParMETIS. Trans. Jpn. Soc. Comput. Eng. Sci. (20120012) (2012) (in Japanese)

    Google Scholar 

  35. Kondo, M., Koshizuka, S.: Improvement of stability in moving particle semi-implicit method. Int. J. Numer. Methods Fluids 65(6), 638–654 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Koshizuka, S., Oka, Y.: Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 123(3), 421–434 (1996)

    Google Scholar 

  37. Lee, C.J.K., Noguchi, H., Koshizuka, S.: Fluid–shell structure interaction analysis by coupled particle and finite element method. Comput. Struct. 85(11), 688–697 (2007)

    Article  Google Scholar 

  38. LexADV. http://adventure.sys.t.u-tokyo.ac.jp/lexadv/

  39. Lu, Y., Wang, Z., Chong, K.: A comparative study of buried structure in soil subjected to blast load using 2d and 3d numerical simulations. Soil Dyn. Earthq. Eng. 25(4), 275–288 (2005)

    Article  Google Scholar 

  40. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)

    Article  Google Scholar 

  41. Matthies, H.G., Steindorf, J.: Partitioned strong coupling algorithms for fluid–structure interaction. Comput. Struct. 81(8), 805–812 (2003)

    Article  Google Scholar 

  42. Matthies, H.G., Niekamp, R., Steindorf, J.: Algorithms for strong coupling procedures. Comput. Methods Appl. Mech. Eng. 195(17), 2028–2049 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  43. Minami, S., Yoshimura, S.: Performance evaluation of nonlinear algorithms with line-search for partitioned coupling techniques for fluid–structure interactions. Int. J. Numer. Methods Fluids 64(10–12), 1129–1147 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  44. Mitsume, N., Yoshimura, S., Murotani, K., Yamada, T.: Improved MPS-FE fluid-structure interaction coupled method with MPS polygon wall boundary model. Comput. Model. Eng. Sci. 101(4), 229–247 (2014)

    MathSciNet  Google Scholar 

  45. Mitsume, N., Yoshimura, S., Murotani, K., Yamada, T.: MPS-FEM partitioned coupling approach for fluid-structure interaction with free surface flow. Int. J. Comput. Methods 11(4), 1350101, 16 (2014)

    Google Scholar 

  46. Monaghan, J.J.: Simulating free surface flows with sph. J. Comput. Phys. 110(2), 399–406 (1994)

    Article  MATH  Google Scholar 

  47. Murotani, K., Koshizuka, S., Tamai, T., Shibata, K., Mitsume, N., Shinobu, Y., Tanaka, S., Hasegawa, K., Nagai, E., Fujisawa, T.: Development of hierarchical domain decomposition explicit MPS method and application to large-scale tsunami analysis with floating objects. J. Adv. Simul. Sci. Eng. 1(1), 16–35 (2014)

    Article  Google Scholar 

  48. Nomura, T.: Ale finite element computations of fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng. 112(1), 291–308 (1994)

    MATH  MathSciNet  Google Scholar 

  49. Oñate, E., Idelsohn, S.R., Del Pin, F., Aubry, R.: The particle finite element method - an overview. Int. J. Comput. Methods 1(02), 267–307 (2004)

    Article  MATH  Google Scholar 

  50. Oochi, M., Koshizuka, S., Sakai, M.: Explicit MPS algorithm for free surface flow analysis. Proc. Conf. Comput. Eng. Sci. 15(2), 589–590 (2010)

    Google Scholar 

  51. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  52. Rafiee, A., Thiagarajan, K.P.: An SPH projection method for simulating fluid-hypoelastic structure interaction. Comput. Methods Appl. Mech. Eng. 198(33), 2785–2795 (2009)

    Article  MATH  Google Scholar 

  53. Report of the JSME Research Committee on the Great East Japan Earthquake Disaster. http://www.jsme.or.jp/English/report/geje/Full%20Text.pdf

  54. Ryzhakov, P., Rossi, R., Idelsohn, S., Oñate, E.: A monolithic lagrangian approach for fluid–structure interaction problems. Comput. Mech. 46(6), 883–899 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  55. Shadloo, M.S., Zainali, A., Yildiz, M., Suleman, A.: A robust weakly compressible sph method and its comparison with an incompressible sph. Int. J. Numer. Methods Eng. 89(8), 939–956 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  56. Shakibaeinia, A., Jin, Y.C.: A weakly compressible MPS method for modeling of open-boundary free-surface flow. Int. J. Numer. Methods Fluids 63(10), 1208–1232 (2010)

    MATH  MathSciNet  Google Scholar 

  57. Takizawa, K., Tezduyar, T.E.: Computational methods for parachute fluid–structure interactions. Arch. Comput. Methods Eng. 19(1), 125–169 (2012)

    Article  MathSciNet  Google Scholar 

  58. Thiyahuddin, M., Gu, Y., Gover, R., Thambiratnam, D.: Fluid–structure interaction analysis of full scale vehicle-barrier impact using coupled sph–fea. Eng. Anal. Boundary Elem. 42, 26–36 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  59. Walhorn, E., Kölke, A., Hübner, B., Dinkler, D.: Fluid–structure coupling within a monolithic model involving free surface flows. Comput. Struct. 83(25), 2100–2111 (2005)

    Article  Google Scholar 

  60. Yamada, T., Yoshimura, S.: Line search partitioned approach for fluid-structure interaction analysis of flapping wing. Comput. Model. Eng. Sci. 24(1), 51 (2008)

    MATH  Google Scholar 

  61. Yamada, Y., Sakai, M., Mizutani, S., Koshizuka, S., Oochi, M., Muruzono, K.: Numerical simulation of three-dimensional free-surface flows with explicit moving particle simulation method. Trans. Atomic Energy Soc. Jpn. 10(3), 185–193 (2011) (in Japanese)

    Article  Google Scholar 

  62. Yang, Q., Jones, V., McCue, L.: Free-surface flow interactions with deformable structures using an SPH–FEM model. Ocean Eng. 55, 136–147 (2012)

    Article  Google Scholar 

  63. Yoshimura, S., Shioya, R., Noguchi, H., Miyamura, T.: Advanced general-purpose computational mechanics system for large-scale analysis and design. J. Comput. Appl. Math. 149(1), 279–296 (2002)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This study was supported by the JSTCREST project “Development of a Numerical Library Based on Hierarchical Domain Decomposition for Post Petascale Simulation.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Mitsume .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mitsume, N., Yoshimura, S., Murotani, K., Yamada, T. (2016). Inundation Simulation Coupling Free Surface Flow and Structures. In: Yoshimura, S., Hori, M., Ohsaki, M. (eds) High-Performance Computing for Structural Mechanics and Earthquake/Tsunami Engineering. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-21048-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21048-3_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21047-6

  • Online ISBN: 978-3-319-21048-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics