Skip to main content

Stochastic Unit Commitment Problem Incorporating Renewable Energy Power

  • Conference paper
  • First Online:
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8947))

Included in the following conference series:

Abstract

It is necessary to incorporate wind and pumped storage plants in classical unit commitment problem due to the increase in use of renewable energy sources. The cost of power generation will be reduced due to inclusion of the renewable energy resources. In this work a Weibull probability density function is used to predict the wind speed. The proposed Unit Commitment (UC) problem includes the factors account for both overestimation and underestimation of available wind power. Pumped storage hydro plants are also included in the scheduling process to balance the uncertainties in the wind power generation. Premature convergence and high computation time are the main drawbacks of the conventional PSO algorithm to solve the optimization problems. In this work a Modified PSO (MPSO) algorithm is proposed to remove the drawbacks of the conventional PSO to solve the proposed stochastic Unit Commitment problem (SUC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wood, A.J., Wollenberg, B.F.: Power Generation Operation and control. John Wiley and Sons, New York (1996)

    Google Scholar 

  2. Wood, A.J., Wollenberg, B.F.: Power Generation, Operation and Control, 2nd edn. Wiley, New York (1996)

    Google Scholar 

  3. Ummels, B.C., Gibescu, M., Pelgrum, E., Kling, W.L., Brand, A.J.: Impacts of wind power on thermal generation unit commitment and dispatch. IEEE Trans. Energy Convers. 22(1), 44–51 (2007)

    Article  Google Scholar 

  4. Constantinescu, E.M., Zavala, V.M., Rocklin, M., Lee, S., Anitescu, M.: A computational framework for uncertainty quantification and stochastic optimization in unit commitment with wind power generation. IEEE Trans. Power Syst. 26(1), 431–441 (2011)

    Article  Google Scholar 

  5. Chen, P.-H.: Pumped storage scheduling using evolutionary particle swarm optimization. IEEE Trans. Energy Convers. 23(1), 294–301 (2008)

    Article  Google Scholar 

  6. Roy, S.: Market constrained optimal planning for wind energy conversion systems over multiple installation sites. IEEE Trans. Energy Convers. 17(1), 124–129 (2002)

    Article  Google Scholar 

  7. Pappala, V.S., Erlich, I., Rohrig, K., Dobschinski, J.: A stochastic model for the optimal operation of a wind-thermal power system. IEEE Trans. Power Syst. 24(2), 940–950 (2009)

    Article  Google Scholar 

  8. Hetzer, J., Yu, D.C., Bhattarai, K.: An economic dispatch model incorporating wind power. IEEE Trans. Energy Convers. 23(2), 603–611 (2008)

    Article  Google Scholar 

  9. Damousis, I.G., Alexiadis, M.C., Theocharis, J.B., Dokopoulos, P.S.: A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation. IEEE Trans. Energy Convers. 19(2), 352–3361 (2004)

    Article  Google Scholar 

  10. Miranda, V., Hang, P.S.: Economic dispatch model with fuzzy wind constraints and attitudes of dispatchers. IEEE Trans. Power Syst. 20(4), 2143–2145 (2005)

    Article  Google Scholar 

  11. Li, S., Wunsch, D.C., O’Hair, E.A., Giesselmann, M.G.: Using neural networks to estimate wind turbine power generation. IEEE Trans. Energy Convers. 16(3), 276–282 (2001)

    Article  Google Scholar 

  12. Ruiz, P.A., Philbrick, C.R., Sauer, P.W.: Modelling approaches for computational cost reduction in stochastic unit commitment formulations. IEEE Trans. Power Syst. 25(1), 588–589 (2010)

    Article  Google Scholar 

  13. Ozturk, U.A., Mazumdar, M., Norman, B.A.: A solution to the stochastic unit commitment using chance constrained programming. IEEE Trans. Power Syst. 19(3), 1589–1598 (2004)

    Article  Google Scholar 

  14. Jiang, R., Wang, J., Guan, Y.: Robust unit commitment with wind power and pumped storage hydro. IEEE Trans. Power Syst. 27(2), 800–810 (2012)

    Article  Google Scholar 

  15. Victoire, T.A.A., Jeyakumar, A.E.: Reserve constrained dynamic dispatch of units with valve-point effects. IEEE Trans. Power Syst. 20(3), 1273–1282 (2005)

    Article  Google Scholar 

  16. Cheng, C.-P., Liu, C.-W., Liu, C.-C.: Unit commitment by lagrangian relaxation and genetic algorithms. IEEE Trans. Energy Convers. 15(2), 707–714 (2000)

    Google Scholar 

  17. Damousis, I.G., Bakirtzis, A.G., Dokopoulos, P.S.: A solution to the unit-commitment problem using integer-coded genetic algorithm. IEEE Trans. Power Syst. 19(2), 1165–1172 (2004)

    Article  Google Scholar 

  18. Chen, C.L.: Simulated annealing-based optimal wind-thermal coordination scheduling. IET Gen. Trans. Distrib. 1(3), 447–455 (2007)

    Article  Google Scholar 

  19. Selvakumar, A.I., Thanushkodi, K.: A new particle swarm optimization solution to nonconvex economic dispatch problems. IEEE Trans. Power Syst. 22(1), 42–51 (2007)

    Article  Google Scholar 

  20. Pappala, V.S., Erlich, I.: A new approach for solving the unit commitment problem by adaptive particle swarm optimization. In: IEEE Transactions on Energy Conversion (2008)

    Google Scholar 

  21. Mallipeddi, R., Suganthan, P.N.: Unit commitment - a survey and comparison of conventional and nature inspired algorithms. Int. J. Bio-Inspired Comput. 6(2), 71–90 (2014)

    Article  Google Scholar 

  22. Patel, M.R.: Wind and Solar Power Systems. CRC Press, Boca Raton, FL (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Ramya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ramya, N.M., Ramesh Babu, M., Arunachalam, S. (2015). Stochastic Unit Commitment Problem Incorporating Renewable Energy Power. In: Panigrahi, B., Suganthan, P., Das, S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2014. Lecture Notes in Computer Science(), vol 8947. Springer, Cham. https://doi.org/10.1007/978-3-319-20294-5_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20294-5_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20293-8

  • Online ISBN: 978-3-319-20294-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics