Skip to main content

Telomere Dysfunction, Chromosomal Instability and Cancer

  • Chapter
  • First Online:
Chromosomal Instability in Cancer Cells

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 200))

Abstract

Telomeres form protective caps at the ends of linear chromosomes to prevent nucleolytic degradation, end-to-end fusion, irregular recombination, and chromosomal instability. Telomeres are composed of repetitive DNA sequences (TTAGGG)n in humans, that are bound by specialized telomere binding proteins. Telomeres lose capping function in response to telomere shortening, which occurs during each division of cells that lack telomerase activity—the enzyme that can synthesize telomeres de novo. Telomeres have a dual role in cancer: telomere shortening can lead to induction of chromosomal instability and to the initiation of tumors, however, initiated tumors need to reactivate telomerase in order to stabilize chromosomes and to gain immortal growth capacity. In this review, we summarize current knowledge on the role of telomeres in the maintenance of chromosomal stability and carcinogenesis.

Cagatay Günes and Karl Lenhard Rudolph equally contributed to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allshire RC, Dempster M, Hastie ND (1989) Human telomeres contain at least three types of G-rich repeat distributed non-randomly. Nucleic Acids Res 17:4611–4627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89:10114–10118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, DePinho RA (2000) Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406:641–645

    Article  CAS  PubMed  Google Scholar 

  • Badie S, Escandell JM, Bouwman P, Carlos AR, Thanasoula M, Gallardo MM, Suram A, Jaco I, Benitez J, Herbig U et al (2010) BRCA2 acts as a RAD51 loader to facilitate telomere replication and capping. Nat Struct Mol Biol 17:1461–1469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barefield C, Karlseder J (2012) The BLM helicase contributes to telomere maintenance through processing of late-replicating intermediate structures. Nucleic Acids Res 40:7358–7367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Begus-Nahrmann Y, Hartmann D, Kraus J, Eshraghi P, Scheffold A, Grieb M, Rasche V, Schirmacher P, Lee HW, Kestler HA et al (2012) Transient telomere dysfunction induces chromosomal instability and promotes carcinogenesis. J Clin Investig 122:2283–2288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Benn PA (1976) Specific chromosome aberrations in senescent fibroblast cell lines derived from human embryos. Am J Hum Genet 28:465–473

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bermejo R, Kumar A, Foiani M (2012) Preserving the genome by regulating chromatin association with the nuclear envelope. Trends Cell Biol 22:465–473

    Article  CAS  PubMed  Google Scholar 

  • Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem 5:182–186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bilousova G, Marusyk A, Porter CC, Cardiff RD, DeGregori J (2005) Impaired DNA replication within progenitor cell pools promotes leukemogenesis. PLoS Biol 3:e401

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Blackburn EHS, Szostak JW (1984) The molecular structure of centromeres and telomeres. Ann Rev Biochem 53:163–194

    Article  CAS  PubMed  Google Scholar 

  • Blasco MA, Funk W, Villeponteau B, Greider CW (1995) Functional characterization and developmental regulation of mouse telomerase RNA. Science 269:1267–1270

    Article  CAS  PubMed  Google Scholar 

  • Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34

    Article  CAS  PubMed  Google Scholar 

  • Braig M, Pallmann N, Preukschas M, Steinemann D, Hofmann W, Gompf A, Streichert T, Braunschweig T, Copland M, Rudolph KL et al (2014) A ‘telomere-associated secretory phenotype’ cooperates with BCR-ABL to drive malignant proliferation of leukemic cells. Leukemia

    Google Scholar 

  • Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR (1997) Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 3:1271–1274

    Article  CAS  PubMed  Google Scholar 

  • Calado RT, Cooper JN, Padilla-Nash HM, Sloand EM, Wu CO, Scheinberg P, Ried T, Young NS (2012) Short telomeres result in chromosomal instability in hematopoietic cells and precede malignant evolution in human aplastic anemia. Leukemia 26:700–707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cesare AJ, Quinney N, Willcox S, Subramanian D, Griffith JD (2003) Telomere looping in P. sativum (common garden pea). Plant J 36:271–279 (for cell and molecular biology)

    Article  CAS  PubMed  Google Scholar 

  • Chang E, Harley CB (1995) Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci USA 92:11190–11194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang M, Luke B, Kraft C, Li Z, Peter M, Lingner J, Rothstein R (2009) Telomerase is essential to alleviate pif1-induced replication stress at telomeres. Genetics 183:779–791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ, Greider CW, DePinho RA (1999) p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97:527–538

    Article  CAS  PubMed  Google Scholar 

  • Chiu CP, Dragowska W, Kim NW, Vaziri H, Yui J, Thomas TE, Harley CB, Lansdorp PM (1996) Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 14:239–248

    Article  CAS  PubMed  Google Scholar 

  • Choudhury AR, Ju Z, Djojosubroto MW, Schienke A, Lechel A, Schaetzlein S, Jiang H, Stepczynska A, Wang C, Buer J et al (2007) Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 39:99–105

    Article  CAS  PubMed  Google Scholar 

  • Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR (2007) Protein composition of catalytically active human telomerase from immortal cells. Science 315:1850–1853

    Article  CAS  PubMed  Google Scholar 

  • Collins K, Mitchell JR (2002) Telomerase in the human organism. Oncogene 21:564–579

    Article  CAS  PubMed  Google Scholar 

  • Cosme-Blanco W, Shen MF, Lazar AJ, Pathak S, Lozano G, Multani AS, Chang S (2007) Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep 8:497–503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11:1921–1929

    PubMed Central  CAS  PubMed  Google Scholar 

  • d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    Article  PubMed  CAS  Google Scholar 

  • d’Adda di Fagagna F, Teo SH, Jackson SP (2004) Functional links between telomeres and proteins of the DNA-damage response. Genes Dev 18:1781–1799

    Article  PubMed  Google Scholar 

  • Damm K, Hemmann U, Garin-Chesa P, Hauel N, Kauffmann I, Priepke H, Niestroj C, Daiber C, Enenkel B, Guilliard B et al (2001) A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J 20:6958–6968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davoli T, Denchi EL, de Lange T (2010) Persistent telomere damage induces bypass of mitosis and tetraploidy. Cell 141:81–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110

    Article  PubMed  CAS  Google Scholar 

  • de Lange T (2010) How shelterin solves the telomere end-protection problem. Cold Spring Harb Symp Quant Biol 75:167–177

    Article  PubMed  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre M, Nuciforo PG, Bensimon A et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638–642

    Article  PubMed  CAS  Google Scholar 

  • Dikmen ZG, Gellert GC, Jackson S, Gryaznov S, Tressler R, Dogan P, Wright WE, Shay JW (2005) In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res 65:7866–7873

    CAS  PubMed  Google Scholar 

  • Dimitrova N, Chen YC, Spector DL, de Lange T (2008) 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456:524–528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ding Z, Wu CJ, Jaskelioff M, Ivanova E, Kost-Alimova M, Protopopov A, Chu GC, Wang G, Lu X, Labrot ES et al (2012) Telomerase reactivation following telomere dysfunction yields murine prostate tumors with bone metastases. Cell 148:896–907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Djojosubroto MW, Choi YS, Lee HW, Rudolph KL (2003) Telomeres and telomerase in aging, regeneration and cancer. Mol Cells 15:164–175

    CAS  PubMed  Google Scholar 

  • Djojosubroto MW, Chin AC, Go N, Schaetzlein S, Manns MP, Gryaznov S, Harley CB, Rudolph KL (2005) Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and increase chemosensitivity of human hepatoma. Hepatology 42:1127–1136

    Article  CAS  PubMed  Google Scholar 

  • Doksani Y, Wu JY, de Lange T, Zhuang X (2013) Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell 155:345–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feldser DM, Greider CW (2007) Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell 11:461–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V, Beausejour CM et al (2012) Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 14:355–365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gisselsson D, Jonson T, Petersen A, Strombeck B, Dal Cin P, Hoglund M, Mitelman F, Mertens F, Mandahl N (2001) Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc Natl Acad Sci USA 98:12683–12688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gonzalez OG, Assfalg R, Koch S, Schelling A, Meena JK, Kraus J, Lechel A, Katz SF, Benes V, Scharffetter-Kochanek K, Kestler HA, Gunes C, Iben S (2014) Telomerase stimulates ribosomal DNA transcription in hyperproliferative conditions. Nat Commun 5:4599

    Google Scholar 

  • Greenberg RA, Chin L, Femino A, Lee KH, Gottlieb GJ, Singer RH, Greider CW, DePinho RA (1999) Short dysfunctional telomeres impair tumorigenesis in the INK4a(delta2/3) cancer-prone mouse. Cell 97:515–525

    Article  CAS  PubMed  Google Scholar 

  • Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405–413

    Article  CAS  PubMed  Google Scholar 

  • Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514

    Article  CAS  PubMed  Google Scholar 

  • Gunes C, Rudolph KL (2012) Telomere dysfunction puts the brakes on oncogene-induced cancers. EMBO J 31:2833–2834

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gunes C, Rudolph KL (2013) The role of telomeres in stem cells and cancer. Cell 152:390–393

    Article  PubMed  CAS  Google Scholar 

  • Gunes C, Lichtsteiner S, Vasserot AP, Englert C (2000) Expression of the hTERT gene is regulated at the level of transcriptional initiation and repressed by Mad1. Cancer Res 60:2116–2121

    CAS  PubMed  Google Scholar 

  • Hackett JA, Feldser DM, Greider CW (2001) Telomere dysfunction increases mutation rate and genomic instability. Cell 106:275–286

    Article  CAS  PubMed  Google Scholar 

  • Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA (1999a) Creation of human tumour cells with defined genetic elements. Nature 400:464–468

    Article  CAS  PubMed  Google Scholar 

  • Hahn WC, Stewart SA, Brooks MW, York SG, Eaton E, Kurachi A, Beijersbergen RL, Knoll JH, Meyerson M, Weinberg RA (1999b) Inhibition of telomerase limits the growth of human cancer cells. Nat Med 5:1164–1170

    Article  CAS  PubMed  Google Scholar 

  • Harley CB (1991) Telomere loss: mitotic clock or genetic time bomb? Mutat Res 256:271–282

    Article  CAS  PubMed  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    Article  CAS  PubMed  Google Scholar 

  • Hartmann D, Srivastava U, Thaler M, Kleinhans KN, N’Kontchou G, Scheffold A, Bauer K, Kratzer RF, Kloos N, Katz SF et al (2011) Telomerase gene mutations are associated with cirrhosis formation. Hepatology 53:1608–1617

    Article  CAS  PubMed  Google Scholar 

  • Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 346:866–868

    Article  CAS  PubMed  Google Scholar 

  • Herbert BS, Pongracz K, Shay JW, Gryaznov SM (2002) Oligonucleotide N3′ → P5′ phosphoramidates as efficient telomerase inhibitors. Oncogene 21:638–642

    Article  PubMed  Google Scholar 

  • Hewitt G, Jurk D, Marques FD, Correia-Melo C, Hardy T, Gackowska A, Anderson R, Taschuk M, Mann J, Passos JF (2012) Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun 3:708

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hiyama K, Hirai Y, Kyoizumi S, Akiyama M, Hiyama E, Piatyszek MA, Shay JW, Ishioka S, Yamakido M (1995) Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J Immunol 155:3711–3715

    CAS  PubMed  Google Scholar 

  • Hiyama E, Tatsumoto N, Kodama T, Hiyama K, Shay J, Yokoyama T (1996) Telomerase activity in human intestine. Int J Oncol 9:453–458

    CAS  PubMed  Google Scholar 

  • Hu J, Hwang SS, Liesa M, Gan B, Sahin E, Jaskelioff M, Ding Z, Ying H, Boutin AT, Zhang H et al (2012) Antitelomerase therapy provokes ALT and mitochondrial adaptive mechanisms in cancer. Cell 148:651–663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jaskelioff M, Song W, Xia J, Liu C, Kramer J, Koido S, Gendler SJ, Calderwood SK, Gong J (2009) Telomerase deficiency and telomere dysfunction inhibit mammary tumors induced by polyomavirus middle T oncogene. Oncogene 28:4225–4236

    Article  CAS  PubMed  Google Scholar 

  • Ju Z, Rudolph KL (2006) Telomeres and telomerase in stem cells during aging and disease. Genome Dyn 1:84–103

    Article  CAS  PubMed  Google Scholar 

  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    Article  CAS  PubMed  Google Scholar 

  • Kipling D, Cooke HJ (1990) Hypervariable ultra-long telomeres in mice. Nature 347:400–402

    Article  CAS  PubMed  Google Scholar 

  • Klobutcher LA, Swanton MT, Donini P, Prescott DM (1981) All gene-sized DNA molecules in four species of hypotrichs have the same terminal sequence and an unusual 3′ terminus. Proc Natl Acad Sci USA 78:3015–3019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar M, Witt B, Knippschild U, Koch S, Meena JK, Heinlein C, Weise JM, Krepulat F, Kuchenbauer F, Iben S et al (2013) CEBP factors regulate telomerase reverse transcriptase promoter activity in whey acidic protein-T mice during mammary carcinogenesis. Int J Cancer 132:2032–2043

    Article  CAS  PubMed  Google Scholar 

  • Lazzarini R, Moretti S, Orecchia S, Betta PG, Procopio A, Catalano A (2008) Enhanced antitumor therapy by inhibition of p21waf1 in human malignant mesothelioma. Clin Cancer Res 14:5099–5107 (an official journal of the American Association for Cancer Research)

    Article  CAS  PubMed  Google Scholar 

  • Lee HW, Blasco MA, Gottlieb GJ, Horner JW 2nd, Greider CW, DePinho RA (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 392:569–574

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Sampathi S, Dai H, Liu C, Zhou M, Hu J, Huang Q, Campbell J, Shin-Ya K, Zheng L et al (2013) Mammalian DNA2 helicase/nuclease cleaves G-quadruplex DNA and is required for telomere integrity. EMBO J 32:1425–1439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Makarov VL, Hirose Y, Langmore JP (1997) Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88:657–666

    Article  CAS  PubMed  Google Scholar 

  • Martinez P, Thanasoula M, Munoz P, Liao C, Tejera A, McNees C, Flores JM, Fernandez-Capetillo O, Tarsounas M, Blasco MA (2009) Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev 23:2060–2075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martinez P, Flores JM, Blasco MA (2012) 53BP1 deficiency combined with telomere dysfunction activates ATR-dependent DNA damage response. J Cell Biol 197:283–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mateyak MK, Zakian VA (2006) Human PIF helicase is cell cycle regulated and associates with telomerase. Cell Cycle 5:2796–2804

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1939) The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc Natl Acad Sci USA 25:405–416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McClintock B (1941) The stability of broken ends of chromosomes in zea mays. Genetics 26:234–282

    PubMed Central  CAS  PubMed  Google Scholar 

  • McElligott R, Wellinger RJ (1997) The terminal DNA structure of mammalian chromosomes. EMBO J 16:3705–3714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meena JK, Cerutti A, Beichler C, Morita Y, Bruhn C, Kumar M, Kraus JM, Speicher MR, Wang ZQ, Kestler HA, d'Adda di Fagagna F, Günes C, Rudolph KL (2015) Telomerase abrogates aneuploidy-induced telomere replication stress, senescence and cell depletion. EMBO J 10:1371–1384

    Google Scholar 

  • Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD, Ziaugra L, Beijersbergen RL, Davidoff MJ, Liu Q et al (1997) hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90:785–795

    Article  CAS  PubMed  Google Scholar 

  • Meyne J, Ratliff RL, Moyzis RK (1989) Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc Natl Acad Sci USA 86:7049–7053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller KM, Rog O, Cooper JP (2006) Semi-conservative DNA replication through telomeres requires Taz1. Nature 440:824–828

    Article  CAS  PubMed  Google Scholar 

  • Morin GB (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59:521–529

    Article  CAS  PubMed  Google Scholar 

  • Morrison SJ, Prowse KR, Ho P, Weissman IL (1996) Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 5:207–216

    Article  CAS  PubMed  Google Scholar 

  • Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85:6622–6626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muller HJ (1938) The remaking of chromosomes. Collect Net 13:181–195

    Google Scholar 

  • Munoz-Jordan JL, Cross GA, de Lange T, Griffith JD (2001) t-loops at trypanosome telomeres. EMBO J 20:579–588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murti KG, Prescott DM (1999) Telomeres of polytene chromosomes in a ciliated protozoan terminate in duplex DNA loops. Proc Natl Acad Sci USA 96:14436–14439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB, Cech TR (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277:955–959

    Article  CAS  PubMed  Google Scholar 

  • Nandakumar J, Cech TR (2013) Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol 14:69–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Norton JC, Piatyszek MA, Wright WE, Shay JW, Corey DR (1996) Inhibition of human telomerase activity by peptide nucleic acids. Nat Biotechnol 14:615–619

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe LV, Richards RI (2006) Common chromosomal fragile sites and cancer: focus on FRA16D. Cancer Lett 232:37–47

    Article  PubMed  CAS  Google Scholar 

  • Paeschke K, Capra JA, Zakian VA (2011) DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145:678–691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pampalona J, Frias C, Genesca A, Tusell L (2012) Progressive telomere dysfunction causes cytokinesis failure and leads to the accumulation of polyploid cells. PLoS Genet 8:e1002679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rabinovitch PS, Dziadon S, Brentnall TA, Emond MJ, Crispin DA, Haggitt RC, Bronner MP (1999) Pancolonic chromosomal instability precedes dysplasia and cancer in ulcerative colitis. Cancer Res 59:5148–5153

    CAS  PubMed  Google Scholar 

  • Rai R, Zheng H, He H, Luo Y, Multani A, Carpenter PB, Chang S (2010) The function of classical and alternative non-homologous end-joining pathways in the fusion of dysfunctional telomeres. EMBO J 29:2598–2610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramirez RD, Wright WE, Shay JW, Taylor RS (1997) Telomerase activity concentrates in the mitotically active segments of human hair follicles. J Invest Dermatol 108:113–117

    Article  CAS  PubMed  Google Scholar 

  • Ravindranath N, Dalal R, Solomon B, Djakiew D, Dym M (1997) Loss of telomerase activity during male germ cell differentiation. Endocrinology 138:4026–4029

    Article  CAS  PubMed  Google Scholar 

  • Ritz JM, Kuhle O, Riethdorf S, Sipos B, Deppert W, Englert C, Gunes C (2005) A novel transgenic mouse model reveals humanlike regulation of an 8-kbp human TERT gene promoter fragment in normal and tumor tissues. Cancer Res 65:1187–1196

    Article  CAS  PubMed  Google Scholar 

  • Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C, DePinho RA (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96:701–712

    Article  CAS  PubMed  Google Scholar 

  • Rudolph KL, Millard M, Bosenberg MW, DePinho RA (2001) Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 28:155–159

    Article  CAS  PubMed  Google Scholar 

  • Rudolph KL, Hartmann D, Opitz OG (2009) Telomere dysfunction and DNA damage checkpoints in diseases and cancer of the gastrointestinal tract. Gastroenterology 137:754–762

    Article  CAS  PubMed  Google Scholar 

  • Saksela E, Moorhead PS (1963) Aneuploidy in the degenerative phase of serial cultivation of human cell strains. Proc Natl Acad Sci USA 50:390–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Savage SA, Giri N, Baerlocher GM, Orr N, Lansdorp PM, Alter BP (2008) TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet 82:501–509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sfeir A, de Lange T (2012) Removal of shelterin reveals the telomere end-protection problem. Science 336:593–597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sfeir A, Kosiyatrakul ST, Hockemeyer D, MacRae SL, Karlseder J, Schildkraut CL, de Lange T (2009) Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138:90–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shay JW, Wright WE (1996) The reactivation of telomerase activity in cancer progression. Trends Genet TIG 12:129–131

    Article  CAS  PubMed  Google Scholar 

  • Shay JW, Pereira-Smith OM, Wright WE (1991) A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 196:33–39

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Yang XR, Ballew B, Rotunno M, Calista D, Fargnoli MC, Ghiorzo P, Bressac-de Paillerets B, Nagore E, Avril MF et al (2014) Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nat Genet 46:482–486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shippen-Lentz D, Blackburn EH (1990) Functional evidence for an RNA template in telomerase. Science 247:546–552

    Article  CAS  PubMed  Google Scholar 

  • Sirma H, Kumar M, Meena JK, Witt B, Weise JM, Lechel A, Ande S, Sakk V, Guguen-Guillouzo C, Zender L et al (2011) The promoter of human telomerase reverse transcriptase is activated during liver regeneration and hepatocyte proliferation. Gastroenterology 141:326–337, 337, e321–323

    Google Scholar 

  • Suram A, Kaplunov J, Patel PL, Ruan H, Cerutti A, Boccardi V, Fumagalli M, Di Micco R, Mirani N, Gurung RL et al (2012) Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions. EMBO J 31:2839–2851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol CB 13:1549–1556

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Kan ZY, Yao Y, Wang Q, Hao YH, Tan Z (2008) G-quadruplex preferentially forms at the very 3′ end of vertebrate telomeric DNA. Nucleic Acids Res 36:1200–1208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tarsounas M, Tijsterman M (2013) Genomes and G-quadruplexes: for better or for worse. J Mol Biol 425:4782–4789

    Article  CAS  PubMed  Google Scholar 

  • Thompson KV, Holliday R (1975) Chromosome changes during the in vitro ageing of MRC-5 human fibroblasts. Exp Cell Res 96:1–6

    Article  CAS  PubMed  Google Scholar 

  • Vannier JB, Pavicic-Kaltenbrunner V, Petalcorin MI, Ding H, Boulton SJ (2012) RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149:795–806

    Article  CAS  PubMed  Google Scholar 

  • Vannier JB, Sandhu S, Petalcorin MI, Wu X, Nabi Z, Ding H, Boulton SJ (2013) RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication. Science 342:239–242

    Article  CAS  PubMed  Google Scholar 

  • Venteicher AS, Abreu EB, Meng Z, McCann KE, Terns RM, Veenstra TD, Terns MP, Artandi SE (2009) A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 323:644–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Viale A, De Franco F, Orleth A, Cambiaghi V, Giuliani V, Bossi D, Ronchini C, Ronzoni S, Muradore I, Monestiroli S et al (2009) Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 457:51–56

    Article  CAS  PubMed  Google Scholar 

  • Vulliamy T, Marrone A, Goldman F, Dearlove A, Bessler M, Mason PJ, Dokal I (2001) The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413:432–435

    Article  CAS  PubMed  Google Scholar 

  • Vulliamy T, Marrone A, Szydlo R, Walne A, Mason PJ, Dokal I (2004) Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat Genet 36:447–449

    Article  CAS  PubMed  Google Scholar 

  • Vulliamy TJ, Walne A, Baskaradas A, Mason PJ, Marrone A, Dokal I (2005) Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure. Blood Cells Mol Dis 34:257–263

    Article  CAS  PubMed  Google Scholar 

  • Waldman T, Lengauer C, Kinzler KW, Vogelstein B (1996) Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381:713–716

    Article  CAS  PubMed  Google Scholar 

  • Walne AJ, Vulliamy T, Marrone A, Beswick R, Kirwan M, Masunari Y, Al-Qurashi FH, Aljurf M, Dokal I (2007) Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum Mol Genet 16:1619–1629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walne AJ, Vulliamy T, Beswick R, Kirwan M, Dokal I (2008) TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes. Blood 112:3594–3600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Sharpless N, Chang S (2013) p16(INK4a) protects against dysfunctional telomere-induced ATR-dependent DNA damage responses. J Clin Investig 123:4489–4501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weise JM, Gunes C (2006) Telomeres and telomerase. A survey about methods and recent advances in cancer diagnostic and therapy. Histol Histopathol 21:1249–1261

    CAS  PubMed  Google Scholar 

  • Weise JM, Gunes C (2009) Differential regulation of human and mouse telomerase reverse transcriptase (TERT) promoter activity during testis development. Mol Reprod Dev 76:309–317

    Article  CAS  PubMed  Google Scholar 

  • Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW (1996) Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18:173–179

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Amos CI, Zhu Y, Zhao H, Grossman BH, Shay JW, Luo S, Hong WK, Spitz MR (2003) Telomere dysfunction: a potential cancer predisposition factor. J Natl Cancer Inst 95:1211–1218

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Calado RT, Ly H, Kajigaya S, Baerlocher GM, Chanock SJ, Lansdorp PM, Young NS (2005) Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med 352:1413–1424

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Inokuchi K, Takeuchi J, Tamai H, Mitamura Y, Kosaka F, Ly H, Dan K (2010) Identification of TINF2 gene mutations in adult Japanese patients with acquired bone marrow failure syndromes. Br J Haematol 150:725–727

    Article  CAS  PubMed  Google Scholar 

  • Zahler AM, Williamson JR, Cech TR, Prescott DM (1991) Inhibition of telomerase by G-quartet DNA structures. Nature 350:718–720

    Article  CAS  PubMed  Google Scholar 

  • Zakian VA (1989) Structure and function of telomeres. Annu Rev Genet 23:579–604

    Article  CAS  PubMed  Google Scholar 

  • Zhong F, Savage SA, Shkreli M, Giri N, Jessop L, Myers T, Chen R, Alter BP, Artandi SE (2011) Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. Genes Dev 25:11–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Lenhard Rudolph or Cagatay Günes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meena, J., Rudolph, K.L., Günes, C. (2015). Telomere Dysfunction, Chromosomal Instability and Cancer. In: Ghadimi, B., Ried, T. (eds) Chromosomal Instability in Cancer Cells. Recent Results in Cancer Research, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-319-20291-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20291-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20290-7

  • Online ISBN: 978-3-319-20291-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics