Skip to main content

Part of the book series: Springer INdAM Series ((SINDAMS,volume 12))

  • 1233 Accesses

Abstract

We develop a bipartite rigidity theory for bipartite graphs parallel to the classical rigidity theory for general graphs. This theory coincides with the study of Babson–Novik’s balanced shifting restricted to graphs. We establish bipartite analogs of the cone, contraction, deletion, and gluing lemmas, and apply these results to derive a bipartite analog of the rigidity criterion for planar graphs. Our result asserts that a bipartite graph is planar only if its balanced shifting does not contain K 3, 3. We also discuss potential applications of this theory to Jockusch’s cubical lower bound conjecture and to upper bound conjectures for embedded simplicial complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Author Eran Nevo reflecting a joint work in progress with Gil Kalai and Isabella Novik.

  2. 2.

    Relation (2) asserts that the velocities respect (infinitesimally) the distance along an embedded edge. If these relations apply to all pairs of vertices the velocities necessarily come from a rigid motion of the entire space.

  3. 3.

    In higher dimensions the class of shifted complexes is much reacher than the class of threshold complexes.

References

  1. Asimow, L., Roth, B.: The rigidity of graphs. Trans. Am. Math. Soc. 245, 279–289 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  2. Asimow, L., Roth, B.: The rigidity of graphs. II. J. Math. Anal. Appl. 68(1), 171–190 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  3. Babson, E., Chan, C.: Counting faces of cubical spheres modulo two. Discrete Math. 212(3), 169–183 (2000). Combinatorics and applications (Tianjin, 1996)

    Google Scholar 

  4. Babson, E., Novik, I: Face numbers and nongeneric initial ideals. Electron. J. Combin. 11(2), Research Paper 25, 23 pp. (electronic) (2004/2006)

    Google Scholar 

  5. Blind, G., Blind, R.: Gaps in the numbers of vertices of cubical polytopes. I. Discrete Comput. Geom. 11(3), 351–356 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bryant, J.L.: Approximating embeddings of polyhedra in codimension three. Trans. Am. Math. Soc. 170, 85–95 (1972)

    Article  MATH  Google Scholar 

  7. Chudnovsky, M., Kalai, G., Nevo, E., Novik, I., Seymour, P.: Bipartite minors. Preprint

    Google Scholar 

  8. Flores, A.: Über n-dimensionale komplexe die im \(\mathbb{R}^{2n+1}\) absolut selbstverschlungen sind. Ergeb. Math. Kolloq. 6, 4–7 (1933/1934)

    Google Scholar 

  9. Freedman, M.H., Krushkal, V.S., Teichner, P.: van Kampen’s embedding obstruction is incomplete for 2-complexes in R 4. Math. Res. Lett. 1(2), 167–176 (1994)

    Google Scholar 

  10. Gluck, H.: Almost all simply connected closed surfaces are rigid. In: Geometric topology (Proceedings of the Conference, Park City, Utah, 1974), pp. 225–239. Lecture Notes in Mathematics, vol. 438. Springer, Berlin (1975)

    Google Scholar 

  11. Jockusch, W.: The lower and upper bound problems for cubical polytopes. Discrete Comput. Geom. 9(2), 159–163 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kalai, G.: Hyperconnectivity of graphs. Graphs Comb. 1(1), 65–79 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kalai, G.: Rigidity and the lower bound theorem. I. Invent. Math. 88(1), 125–151 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kalai, G.: The diameter of graphs of convex polytopes and f-vector theory. In: Applied Geometry and Discrete Mathematics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 387–411. American Mathematical Society, Providence, RI (1991)

    Google Scholar 

  15. Kalai, G.: Algebraic shifting. In: Computational Commutative Algebra and Combinatorics (Osaka, 1999). Advanced Studies in Pure Mathematics, vol. 33, pp. 121–163. Mathematical Society Japan, Tokyo (2002)

    Google Scholar 

  16. Lee, C.W.: P.L.-spheres, convex polytopes, and stress. Discrete Comput. Geom. 15(4), 389–421 (1996)

    Google Scholar 

  17. Nevo, E.: Algebraic Shifting and f-Vector Theory. Ph.D. Thesis, Hebrew University, Jerusalem (2007)

    Google Scholar 

  18. Nevo, E.: On embeddability and stresses of graphs. Combinatorica 27(4), 465–472 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shapiro, A.: Obstructions to the imbedding of a complex in a euclidean space. I. The first obstruction. Ann. Math. (2) 66, 256–269 (1957)

    Google Scholar 

  20. van Kampen, E.R.: Komplexe in euklidischen räumen. Abh. Math. Sem. 9, 72–78 (1932)

    Article  Google Scholar 

  21. Wagner, K.: Über eine Eigenschaft der ebenen Komplexe. Math. Ann. 114(1), 570–590 (1937)

    Article  MathSciNet  Google Scholar 

  22. Whiteley, W.: Cones, infinity and 1-story buildings. Struct. Topology (8), 53–70 (1983). With a French translation

    Google Scholar 

  23. Whiteley, W.: A matroid on hypergraphs, with applications in scene analysis and geometry. Discrete Comput. Geom. 4(1), 75–95 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Whiteley, W.: Vertex splitting in isostatic frameworks. Struct. Topology 16, 23–30 (1989)

    MathSciNet  Google Scholar 

  25. Wu, W.-t.: A Theory of Imbedding, Immersion, and Isotopy of Polytopes in a Euclidean Space. Science Press, Peking (1965)

    Google Scholar 

Download references

Acknowledgements

Research was partially supported by Marie Curie grant IRG-270923 and ISF grant 805/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eran Nevo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nevo, E. (2015). Bipartite Rigidity. In: Benedetti, B., Delucchi, E., Moci, L. (eds) Combinatorial Methods in Topology and Algebra. Springer INdAM Series, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-20155-9_20

Download citation

Publish with us

Policies and ethics