Skip to main content

Process-Oriented and Product-Oriented Assessment of Experimental Skills in Physics: A Comparison

  • Chapter
Insights from Research in Science Teaching and Learning

Part of the book series: Contributions from Science Education Research ((CFSE,volume 2))

Abstract

The acquisition of experimental skills is regarded as an important part of science education. Models describing experimental skills usually distinguish between three dimensions of experimenting: prepare, perform, and evaluate. Valid assessment procedures for experimental skills have to consider all these three dimensions. Hands-on tests are especially useful in dealing with the perform dimension. However, in large-scale assessments, the scoring of students’ experimental skills is usually only based on the products of the experiments. Does this approach sufficiently account for a student’s ability to carry out experiments? On the one hand, a process-oriented approach that considers the quality of students’ actions, e.g., while setting up an experiment or measuring, provides a broader basis for assessments. On the other hand, process analyses are time-consuming. In this paper, we compare a process-oriented assessment of experimental skills that is based on videos of students’ actions in a hands-on test and their lab sheets with a product-oriented assessment that analyses only the lab sheets. Students’ scores from both assessments show high correlations in the dimensions prepare and evaluate, but only medium and low correlations in the perform dimension. Thus, process- and product-oriented analysis methods are not exchangeable in the perform dimension. Process-oriented approaches appear to be necessary for the assessment of experimental skills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As a high correlation, we define a correlation above 0.7 (Kendall-Tau b).

References

  • American Association for the Advancement of Science (AAAS). (1993). Benchmarks for science literacy. New York: Oxford University Press.

    Google Scholar 

  • Baxter, G. P., & Shavelson, R. J. (1994). Science performance assessments: Benchmarks and surrogates. International Journal of Educational Research, 21, 279–298.

    Article  Google Scholar 

  • Bortz, J., & Döring, N. (2006). Forschungsmethoden und Evaluation für Human- und Sozialwissenschaftler. Berlin/Heidelberg: Springer.

    Book  Google Scholar 

  • Brell, C. (2008). Lernmedien und Lernerfolg – reale und virtuelle Materialien im Physikunterricht. Empirische Untersuchungen in achten Klassen an Gymnasien (Laborstudie) zum Computereinsatz mit Simulationen und IBE. In H. Niedderer, H. Fischler, & E. Sumfleth (Eds.), Studien zum Physik- und Chemielernen: 74. Berlin: Logos.

    Google Scholar 

  • Department for Education and Employment (DfEE). (1999). Science -The national curriculum for England. London: Department for Education and Employment.

    Google Scholar 

  • Dickmann, M., Schreiber, N., & Theyßen, H. (2012). Vergleich prozessorientierter Auswertungsverfahren für Experimentaltests. In S. Bernholt (Ed.), Konzepte fachdidaktischer Strukturierung für den Unterricht (pp. 449–451). Münster: LIT.

    Google Scholar 

  • Emden, M., & Sumfleth, E. (2012). Prozessorientierte Leistungsbewertung des experimentellen Arbeitens. Zur Eignung einer Protokollmethode zur Bewertung von Experimentierprozessen. Der mathematische und naturwissenschaftliche Unterricht (MNU), 65, 68–75.

    Google Scholar 

  • Engelhardt, P. V., & Beichner, R. J. (2004). Students’ understanding of direct current resistive electrical circuits. American Journal of Physics, 72, 98–115.

    Article  Google Scholar 

  • Garden, R. A. (1999). Development of TIMSS performance assessment tasks. Studies in Educational Evaluation, 25, 217–241.

    Article  Google Scholar 

  • Gut, C. (2012). Modellierung und Messung experimenteller Kompetenz. Analyse eines large-scale Experimentiertests. In H. Niedderer, H. Fischler, & E. Sumfleth (Eds.), Studien zum Physik- und Chemielernen: 134. Berlin: Logos.

    Google Scholar 

  • Gut, C., Hild, P., Metzger, S., Tardent, J. (2014). Problemtypenbasierte Modellierung und Messung experimenteller Kompetenzen von 12- bis 15-jährigen Jugendlichen. PhyDid B, Didaktik der Physik – Beiträge zur DPG-Frühjahrstagung 2014.

    Google Scholar 

  • Hammann, M. (2004). Kompetenzentwicklungsmodelle: Merkmale und ihre Bedeutung – dargestellt anhand von Kompetenzen beim Experimentieren. Der mathematische und naturwissenschaftliche Unterricht (MNU), 57, 196–203.

    Google Scholar 

  • Heller, K. A., & Perleth, C. (2000). Kognitiver Fähigkeitstest für 4.-12. Klassen, Revision (KFT 4-12+ R). Göttingen: Hogrefe.

    Google Scholar 

  • Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science, 12, 1–48.

    Article  Google Scholar 

  • KMK. (2005). Bildungsstandards im Fach Physik für den Mittleren Schulabschluss. München: Luchterhand.

    Google Scholar 

  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorial data. Biometrics, 33, 159–174.

    Article  Google Scholar 

  • Mayer, J. (2007). Erkenntnisgewinnung als wissenschaftliches Problemlösen. In D. Krüger & H. Vogt (Eds.), Theorien in der biologiedidaktischen Forschung (pp. 177–186). Berlin/Heidelberg: Springer.

    Google Scholar 

  • National Research Council (NRC). (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.

    Google Scholar 

  • Nawrath, D., Maiseyenka, V., & Schecker, H. (2011). Experimentelle Kompetenz – Ein Modell für die Unterrichtspraxis. Praxis der Naturwissenschaften – Physik in der Schule 60, 42–48.

    Google Scholar 

  • Neumann, K. (2004). Didaktische Rekonstruktion eines physikalischen Praktikums für Physiker. In H. Niedderer, H. Fischler, & E. Sumfleth (Eds.), Studien zum Physik- und Chemielernen: 38. Berlin: Logos.

    Google Scholar 

  • Niedderer, H., von Aufschnaiter, S., Tiberghien, A., et al. (2002). Talking physics in labwork contexts – A category based analysis of videotapes. In D. Psillos & H. Niedderer (Eds.), Teaching and learning in the science laboratory (pp. 31–40). Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Platova, E., & Walpuski, M. (2013). Improvement and evaluation of laboratory work for first-semester teacher students. In C. P. Constantinou, N. Papadouris, A. Hadjigeorgiou (Eds.), E-Book Proceedings of the ESERA 2013 Conference: Science Education Research For Evidence-based Teaching and Coherence in Learning. Part 3: Science teaching processes (Co-Eds: A. Tiberghien, E. Kyza), (pp. 37–43). Nicosia, Cyprus: European Science Education Research Association. http://www.esera.org/media/esera2013/Elina_Platova_16Dec2013.pdf. Accessed 27 Feb 2015.

  • Ramseier, E., Labudde, P., & Adamina, M. (2011). Validierung des Kompetenzmodells HarmoS Naturwissenschaften: Fazite und Defizite. Zeitschrift für Didaktik der Naturwissenschaften, 17, 7–33.

    Google Scholar 

  • Ruiz-Primo, M. A., & Shavelson, R. J. (1996). Rhetoric and reality in science performance assessments: An update. Journal of Research in Science Teaching, 33, 1045–1063.

    Article  Google Scholar 

  • Schreiber, N. (2012). Diagnostik experimenteller Kompetenz – Validierung technologiegestützter Testverfahren im Rahmen eines Kompetenzstrukturmodells. In H. Niedderer, H. Fischler, & E. Sumfleth (Eds.), Studien zum Physik- und Chemielernen: 139. Berlin: Logos.

    Google Scholar 

  • Schreiber, N., Theyßen, H., & Schecker, H. (2009). Experimentelle Kompetenz messen?! Physik und Didaktik in Schule und Hochschule, 8, 92–101.

    Google Scholar 

  • Schreiber, N., Theyßen, H., & Schecker, H. (2014). Diagnostik experimenteller Kompetenz: Kann man Realexperimente durch Simulationen ersetzen? Zeitschrift für Didaktik der Naturwissenschaften, 20, 161–173.

    Article  Google Scholar 

  • Shavelson, R. J., Baxter, G. P., & Gao, X. (1993). Sampling variability of performance assessments. Journal of Educational Measurement, 30, 215–232.

    Article  Google Scholar 

  • Shavelson, R. J., Ruiz-Primo, M. A., & Wiley, E. W. (1999). Note on sources of sampling variability in science performance assessments. Journal of Educational Measurement, 36, 61–71.

    Article  Google Scholar 

  • Stebler, R., Reusser, K., & Ramseier, E. (1998). Praktische Anwendungsaufgaben zur integrierten Förderung formaler und materialer Kompetenzen – Erträge aus dem TIMSS-Experimentiertest. Bildungsforschung und Bildungspraxis, 20, 28–54.

    Google Scholar 

  • Stecher, B. M., & Klein, S. P. (1997). The cost of science performance assessments in large-scale testing programs. Educational Evaluation and Policy Analysis, 19, 1–14.

    Article  Google Scholar 

  • Theyßen, H., Schecker, H., Gut, C., Hopf, M., Kuhn, J., Labudde, P., Müller, A., Schreiber, N., & Vogt, P. (2014). Modelling and assessing experimental competencies in physics. In C. Bruguière, A. Tiberghien, & P. Clément (Eds.), 9th ESERA conference selected contributions: Topics and trends in current education – contributions from science education research (pp. 321–337). Heidelberg: Springer.

    Google Scholar 

  • von Aufschnaiter, C., & von Aufschnaiter, S. (2007). University students’ activities, thinking and learning during laboratory work. European Journal of Physics, 28, 51–60.

    Article  Google Scholar 

  • von Rhöneck, C. (1988). Aufgaben zum Spannungsbegriff. Naturwissenschaften im Unterricht – Physik/Chemie, 36, 38–41.

    Google Scholar 

  • Walpuski, M. (2006). Optimierung von experimenteller Kleingruppenarbeit durch Strukturierungshilfen und Feedback. In H. Niedderer, H. Fischler, & E. Sumfleth (Eds.), Studien zum Physik- und Chemielernen: 49. Berlin: Logos.

    Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the German Research Foundation (FKZ Sche 508/4-1 and Th 1288/3-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Schreiber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schreiber, N., Theyßen, H., Schecker, H. (2016). Process-Oriented and Product-Oriented Assessment of Experimental Skills in Physics: A Comparison. In: Papadouris, N., Hadjigeorgiou, A., Constantinou, C. (eds) Insights from Research in Science Teaching and Learning. Contributions from Science Education Research, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-20074-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20074-3_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20073-6

  • Online ISBN: 978-3-319-20074-3

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics