Skip to main content

Somatic Embryogenesis: A Valuable Strategy for Phyto-Climbing Diversity Conservation

  • Chapter
  • First Online:

Abstract

Somatic embryogenesis is the production of embryo-like structures from somatic cells without any gametic fusion. With a low frequency of chimeras, a high number of regenerants, and a limited level of somaclonal variations, somatic embryogenesis is more attractive than organogenesis as a plant regeneration system. Somatic embryos arise both naturally (in vivo) and in culture conditions (in vitro) either direct or through callus (indirect embryogenesis). Secondary embryogenesis is a special case of indirect somatic embryogenesis where secondary somatic embryos are produced through already induced primary embryos as initial explants. Coordinated behavior of morphogenic cells determines single- or multiple-cell origin of somatic embryos. In vitro conditions and plant growth regulators (PGRs) (exogenously added to the culture medium and endogenous PGRs) both are responsible for the induction of embryogenesis. Various extracellular proteins, arabinogalactan proteins, lipochito-oligosaccharides, and genes such as SERK, LEAFY COTYLEDON, BABY BOOM, and WUSCHEL regulate somatic embryogenesis. Being bipolar in nature, somatic embryogenesis is one of the good approaches to speed up the clonal propagation of plants. Synseed preparation is another important aspect of somatic embryos that can be used for germplasm conservation. However, poor germination of embryos is a major limitation of somatic embryogenesis in many plants. The present chapter provides a review on somatic embryogenesis in various medicinal and ornamental climbers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adesanya SA, Nia R, Martin MT, Boukamcha N, Montagnac A, Pais M (1999) Stilbene derivatives from Cissus quadrangularis. J Nat Prod 62:1694–1695

    Article  CAS  Google Scholar 

  • Ahloowalia BS (1991) Somatic embryos in monocots. Their genesis and genetic stability. Rev Cytol Biol Veget Bot 14:223–235

    Google Scholar 

  • Ahmadi B, Shariatpanahi ME, da Silva JAT (2014) Efficient induction of microspore embryogenesis using abscisic acid, jasmonic acid and salicylic acid in Brassica napus L. Plant Cell Tiss Org Cult 116:343–351

    Article  CAS  Google Scholar 

  • Alam MM, Siddiqui MB, Hussain W (1990) Treatment of diabetes through herbal drugs in rural India. Fitoterapia 61:240–242

    Google Scholar 

  • Aleith F, Richter G (1991) Gene expression during induction of somatic embryogenesis in carrot cell suspensions. Planta 183:17–24

    Article  CAS  PubMed  Google Scholar 

  • Ali MOH, Fuji T, Fujieda K (1991) Techniques of propagation and breeding of Kakrol (Momordica dioica Roxb.). Sci Hortic 47:335–343

    Article  Google Scholar 

  • Anonymous (1988) The wealth of India: a dictionary of Indian raw materials and industrial products, vol II. Publication and Information Directorate, CSIR, New Delhi, pp 608–643

    Google Scholar 

  • Anonymous (2003) The wealth of India: a dictionary of Indian raw materials and industrial products, vol III. Publication and Information Directorate, CSIR, New Delhi, p 24

    Google Scholar 

  • Anthony P, Otoni WC, Power JB, Lowe KC, Davey MR (1999) Protoplasts isolation, culture and plant regeneration from Passiflora. In: Hall RD (ed) Methods in molecular biology, plant cell culture protocols, vol 111, 1st edn. Humana Press, Totowa, pp 169–181

    Chapter  Google Scholar 

  • Arntzen CJ (1997) High tech herbal medicine: plant based vaccines. Nat Biotechnol 15:221–222

    Article  CAS  PubMed  Google Scholar 

  • Ashok Kumar HG, Murthy HN, Paek KY (2002) Somatic embryogenesis and plant regeneration in Gymnema sylvestre. Plant Cell Tiss Org Cult 71:85–88

    Article  CAS  Google Scholar 

  • Augustine AC, D’Souza L (1997) Somatic embryogenesis in Gnetum ula Brongn. (Gnetum edule) (Wiild) Blume. Plant Cell Rep 16:354–357

    CAS  Google Scholar 

  • Battaglia E (1963) Apomixis. In: Maheshwari P (ed) Recent advances in the embryology of angiosperms, International Society of Plant Morphologists. University of Delhi, New Delhi, pp 221–264

    Google Scholar 

  • Bhalla PL, Singh MB (2006) Molecular control of stem cell maintenance in shoot apical meristem. Plant Cell Rep 25:249–256

    Article  CAS  PubMed  Google Scholar 

  • Bhavan BV (1992) Selected medicinal plants of India. Tata Press, Bombay

    Google Scholar 

  • Boutilier K, Offringa R, Sharma VK (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braglia L, Benedetti L, Giovannini A, Nicoletti F, Bianchini C, Pipino L, Mercuri A (2010) In vitro plant regeneration as a tool to improve ornamental characters in Passiflora species. Acta Horticult 855:47–52

    Article  Google Scholar 

  • Cairney J, Pullman GS (2007) The cellular and molecular biology of conifer embryogenesis. New Phytol 176:511–536

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Römheld V (1997) Boron deficiency-induced impairments of cellular functions in plants. Plant Soil 193:71–83

    Article  CAS  Google Scholar 

  • Carimi F, Barizza E, Gardiman M, Schiavo FL (2005) Somatic embryogenesis from stigmas and styles of grapevine. In Vitro Cell Dev Biol Plant 41:249–252

    Article  CAS  Google Scholar 

  • Chandrasekhar T, Mohammad Hussain T, Gopal GR, Srinivasa Rao JV (2006) Somatic embryogenesis of Tylophora indica (Burm. f.) Merril., an important medicinal plant. Int J App Sci Eng 4:33–40

    Google Scholar 

  • Chen AH, Yang JL, Niu YD, Yang CP, Liu GF, Li CH (2010) High frequency somatic embryogenesis from germinated zygotic embryos of Schisandra chinensis and evaluation of the effects of medium strength, sucrose, GA3, and BA on somatic embryo development. Plant Cell Tiss Org Cult 102:357–364

    Article  CAS  Google Scholar 

  • Chopra NN, Chopra IC, Handa KL, Kapur LD (1958) Cissus quadranglularis. In: Dhar UD (ed) Indigenous drugs of India. Dhur, Calcutta, pp 669–670

    Google Scholar 

  • Chopra SS, Patel MR, Awadhiya RP (1976) Studies of Cissus quadrangularis in experimental fracture repair: a histopathological study. Indian J Med Res 64:1365–1368

    CAS  PubMed  Google Scholar 

  • Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis-recent advances. Curr Sci 86:715–730

    Google Scholar 

  • Curaba J, Moritz T, Blervaque R, Parcy F, Raz V, Herzog M, Vachon G (2004) AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDONS2 and FUS3 in Arabidopsis. Plant Physiol 136:3660–3669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das DK, Reddy MK, Upadhyaya KC, Sopory SK (2002) An efficient leaf disc culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.). Plant Cell Rep 20:999–1005

    Article  CAS  Google Scholar 

  • Dharmendra, Sudarshana MS, Niranjan MH (2010) In vitro micropropagation of Oxystelma secamone (L) Karst-a medicinal plant. Nat Sci 8:15–19

    Google Scholar 

  • Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509

    CAS  Google Scholar 

  • Domoki M, Gyorgyey J, Biro J (2006) Identification and characterization of genes associated with the induction of embryogenic competence in leaf protoplast-derived alfalfa cells. Biochim Biophys Acta 1759:543–551

    Article  CAS  PubMed  Google Scholar 

  • Dornelas MC, Vieira MLC (1994) Tissue culture studies on species of Passiflora. Plant Cell Tiss Org Cult 36:211–217

    Article  CAS  Google Scholar 

  • Elhiti M, Stasolla C (2011) The use of zygotic embryos as explants for in vitro propagation: an overview. Methods Mol Biol 710:229–255

    Article  CAS  PubMed  Google Scholar 

  • Ernst A (1918) Bastardierung als Urache der Apogamie im Pflazenreich. Gustav Fisher, Jena

    Google Scholar 

  • Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss Org Cult 74:201–228

    Article  CAS  Google Scholar 

  • Fernando JA, Vieira MLC, Machado SR, Appezzato-da-Gloria B (2007) New insights into the in vitro organogenesis process: the case of Passiflora. Plant Cell Tiss Org Cult 91:37–44

    Article  Google Scholar 

  • Filonova LH, Bozhkov PV, Brukhin VB, Daniel G, Zhivotovsky B, Von Arnold S (2000) Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J Cell Sci 113:4399–4411

    CAS  PubMed  Google Scholar 

  • FNP CONSULTORIA, COMÉRCIO (2009) Agrianual 2009: anuário estatístico da agricultura brasileira. Argos Comunicacão, São Paulo, pp 387–394 (in Portuguese)

    Google Scholar 

  • Gaj MD, Zhang S, Harada JJ, Lemaux PG (2005) Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222:977–988

    Article  CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension culture of soya bean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Garcia R, Pacheco G, Falca˜o E, Borges G, Mansur E (2011) Influence of type of explant, plant growth regeneration, salt composition of basal medium, and light on callogenesis and regeneration in Passiflora suberosa (Passifloraceae). Plant Cell Tiss Org Cult 106:47–54

    Article  CAS  Google Scholar 

  • Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P (2004) The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell 4:373–385

    Article  Google Scholar 

  • Giridhar P, Kumar V, Ravishankar GA (2004) Somatic embryogenesis, organogenesis and regeneration from leaf callus culture of Decalepis hamiltonii Wight and Arn., an endangered shrub. In Vitro Cell Dev Biol Plant 40:567–571

    Article  CAS  Google Scholar 

  • Gutiérrez-Mora A, Ruvalcaba-Ruíz D, Rodríguez-Domínguez JM, Loera-Quezada MM, Rodríguez-Garay B (2004) Recent advances in the biotechnology of Agave: a cell approach. In: Pandalai SG (ed) Recent research developments in cell biology, vol 2. Transworld Research Network, Kerala, pp 12–26. ISBN 81-7895-142-8

    Google Scholar 

  • Haccius B (1978) Question of unicellular origin of non-zygotic embryos in callus cultures. Phytomorphology 28:74–81

    Google Scholar 

  • Haccius B, Lakshmanan KK (1969) Adventiv-embryonen – embryoide – adventivknospen. Ein beitrag zur klarung der begriffe. Oesterr Bot 116:145–158

    Article  Google Scholar 

  • Halperin W, Wetherell DF (1964) Adventive embryogeny in tissue cultures of the wild carrot, Daucus carota. Am J Bot 51:274–283

    Article  CAS  Google Scholar 

  • Hancke JL, Burgos RA, Ahumada F (1999) Schisandra chinensis (Turcz.) Baill. Fitoterapia 70:451–471

    Article  CAS  Google Scholar 

  • Harish R, Shivanandappa T (2010) Hepatoprotective potential of Decalepis hamiltonii (Wight and Arn) against carbon tetrachloride-induced hepatic damage in rats. J Pharm Bioallied Sci 2:341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He DG, Yang YM, Bertram J, Scott KJ (1990) The histological development of the regenerative tissue derived from cultured immature embryos of wheat (Triticum aestivum L.). Plant Sci 68:103–111

    Article  Google Scholar 

  • Henry RJ (1998) Molecular and biochemical characterization of somaclonal variation. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Academic Publishers, Dordrecht, pp 485–499

    Chapter  Google Scholar 

  • Heringer AS, Steinmacher DA, Fraga HPF, Vieira LN, Ree JF, Guerra MP (2013) Global DNA methylation profiles of somatic embryos of peach palm (Bactris gasipaes Kunth) are influenced by cryoprotectants and droplet-vitrification cryopreservation. Plant Cell Tiss Org Cult 114:365–372

    Article  CAS  Google Scholar 

  • Hu H, Brown PH (1994) Localization of boron in cell walls of squash and tobacco and its association with pectin. Evidence for a structural role of boron in the cell wall. Plant Physiol 105:681–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob KC (1937) An unrecorded economic product Decalepis hamiltonii W. & Arn., family Asclepiadaceae. Madras Agric J 25:176

    Google Scholar 

  • Jain NN, Ohal CC, Shroff SK, Bhutada RH, Somani RS, Kasture VS, Kasture SB (2003) Clitoria ternatea and the CNS. Pharmacol Biochem Behav 75:529–536

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Soni M, Deb L (2008) Antioxidant and hepatoprotective activity of ethanolic and aqueous extracts of Momordica dioica Roxb. Leaves. J Ethnopharmacol 4:115–118

    CAS  Google Scholar 

  • Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110

    Article  CAS  Google Scholar 

  • Junqueira NTV, Braga MF, Faleiro FG, Peixoto JR, Bernacci LC (2005) Potential of wild passionfruit species as sources of disease resistance. In: Faleiro FG, Junqueira NTV, Braga MF (eds) Passionfruit: germplasm and breeding. Embrapa Cerrados, Planaltina, pp 80–108 (in Portuguese)

    Google Scholar 

  • Karpoff AJ (1982) Hormones and early in vitro development of epiphyllous propagules on Bryophyllum calycinum. Am J Bot 69:348–355

    Article  CAS  Google Scholar 

  • Kausch AP, Horner HT (1982) A comparison of calcium oxalate crystals isolated from callus cultures and their explant sources. Scan Electron Microsc 1:199–211

    Google Scholar 

  • Kim TD, Anbazhagan VR, Park JI (2005) Somatic embryogenesis in Schisandra chinensis (Turcz.) Baill. In Vitro Cell Dev Biol Plant 41:253–257

    Article  CAS  Google Scholar 

  • Kirtikar KR, Basu BD (1975) Indian Med. plants, vol III, 2nd edn. International Book Distributors, Dehradun

    Google Scholar 

  • Kulkarni C, Pattanshetty JR, Amruthraj G (1988) Effect of alcoholic extract of Clitoria ternatea Linn. On central nervous system in rodents. Indian J Exp Biol 26:957–960

    CAS  PubMed  Google Scholar 

  • Kumar GK, Thomas TD (2012) High frequency somatic embryogenesis and synthetic seed production in Clitoria ternatea Linn. Plant Cell Tiss Org Cult 110:141–151

    Article  CAS  Google Scholar 

  • Lakshmanan P, Taji A (2000) Somatic embryogenesis in leguminous plants. Plant Biol 2:136–146

    Article  CAS  Google Scholar 

  • Liu C, Xu Z, Chua NH (1993) Auxin Polar Transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5:621–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardi SP, Passos IRS, Nogueira MCS, Appezzato-da-Glόria B (2007) In vitro shoot regeneration from roots and leaf discs of Passiflora cincinnata Mast. Braz Arch Biol Technol 50:239–247

    Article  Google Scholar 

  • Luo L, Li Z, Zhang Y, Huang R (1998) Triterpenes and steroidal compounds from Momordica dioica. Yao Xue Xue Bao 33:839–842

    CAS  PubMed  Google Scholar 

  • Martinelli L, Gribaudo I (2001) Somatic embryogenesis in grapevine (Vitis spp.). In: Roublekais-Angelakis K (ed) Molecular biology and biotechnology of grapevine. Kluwer, Dordrecht, pp 327–352

    Chapter  Google Scholar 

  • Martinelli L, Candioli E, Costa D, Poletti V, Rascio N (2001) Morphogenic competence of Vitis rupestris S. secondary somatic embryos with a long culture history. Plant Cell Rep 20:279–284

    Article  CAS  Google Scholar 

  • Mauro MC, Nef C, Fallot J (1986) Stimulation of somatic embryogenesis and plant regeneration from anther culture of Vitis vinifera cv. Cabernet-Sauvignon. Plant Cell Rep 5:377–380

    Article  Google Scholar 

  • Mehta M, Kaur N, Bhutani KK (2001) Determination of marker constituents from Cissus quadrangularis Linn. and their quantitation by HPTLC and HPLC. Phytochem Anal 12:91–95

    Article  CAS  PubMed  Google Scholar 

  • Merkle SA, Sommer HE (1986) Somatic embryogenesis in tissue cultures of Liriodendron tulipifera. Can J For Res 16:420–422

    Article  Google Scholar 

  • Michael Gomez SM, Kalamani A (2003) Butterfly pea (Clitoria ternatea L.): a nutritive multipurpose forage legume for the tropics: an overview. Pak J Nutr 2:374–379

    Article  Google Scholar 

  • Mondal A, Ghosh GP, Zuberi MI (2006) Phylogenetic relationship in different kakrol collections of Bangladesh. Pak J Biol Sci 9:1516–1524

    Article  Google Scholar 

  • Mullins MG, Srinivasan C (1976) Somatic embryos and plantlets from an ancient clone of the grapevine (cv. Cabernet-Sauvignon) by apomixes in vitro. J Exp Bot 27:1022–1030

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murti PB, Seshadri TR (1941) A study of the chemical components of the roots of Decalepis hamiltonii (Makali beru). Part IV-Resinol of Decalepis hamiltonii and Hemidesmus indicus. Proc Ind Acad Sci A 14:93–99

    Google Scholar 

  • Nabi SA, Rashid MM, Amin MA, Rasul MG (2002) Organogenesis in Teasle Gourd (Momordica dioica Roxb.). Plant Tis Cult 12:173–180

    Google Scholar 

  • Nakajima I, Matsuta N (2003) Somatic embryogenesis from filaments of Vitis vinifera L. and Vitis labruscana Bailey. Vitis 42:53–54

    CAS  Google Scholar 

  • Nakano M, Watanabe Y, Hoshino Y (2000) Histological examination of callogenesis and adventitious embryogenesis in immature ovary culture of grapevine (Vitis vinifera L.). J Hortic Sci Biotechnol 75:154–160

    Article  Google Scholar 

  • Nandkarni K (1976) Tylophora asthmatica W. & A. (N.O.:- Asclepiadaceae). In: Nandkarni K (ed) Indian materia medica. Popular Prakashan, Bombay, pp 1252–1253

    Google Scholar 

  • Naveen S, Khanum F (2010) Antidiabetic, antiatherosclerotic and hepatoprotective properties of Decalepis hamiltonii in streptozotocin-induced diabetic rats. J Food Biochem 34:1231–1248

    Article  CAS  Google Scholar 

  • Nhut DT, Khiet BLT, Thi NN, Thuy DTT, Duy N, Hai NT, Huyen PX (2007) High frequency shoot formation of yellow passion fruit (Passiflora edulis f. flavicarpa) via thin cell layer (TCL) technology. In: Jain SM, Häggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, Dordrecht, pp 417–426

    Chapter  Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  CAS  PubMed  Google Scholar 

  • Nygren A (1954) Apomixis in angiosperm. II. Bot Rev 20:577–649

    Article  Google Scholar 

  • Oliveira JC, Ruggiero C (2005) Passionfruit species with agronomic potential. In: Faleiro FG, Junqueira NTV, Braga MF (eds) Passionfruit: germplasm and breeding. Embrapa Cerrados, Planaltina, pp 143–158 (in Portuguese)

    Google Scholar 

  • Osternack N, Saare-Surminski K, Preil W, Lieberei R (1999) Induction of somatic embryos, adventitious shoots and roots in hypocotyl tissue of Euphorbia pulcherrima Willd. ex Klotzsch: comparative studies on embryogenic and organogenic competence. J Appl Bot 73:197–201

    Google Scholar 

  • Otoni WC (1995) Somatic embryogenesis, somatic hybridization, and genetic transformation in Passiflora species. PhD dissertation, Federal University of Viçosa, Viçosa (in Portuguese)

    Google Scholar 

  • Pagnussat GC, Alandete-Saez M, Bowman JL, Sundaresan V (2009) Auxin dependent patterning and gamete specification in the Arabidopsis female gametophyte. Science 324:1684–1689

    Article  CAS  PubMed  Google Scholar 

  • Panday NK, Tewari KC, Tewari RN, Joshi GC, Pande VN, Pandey G (1993) Medicinal plants of Kumaon Himalaya: strategies for conservation. In: Dhar U (ed) Himalayan biodiversity conservation strategies, vol 3. Himavikas Publications, Nainital, pp 293–302

    Google Scholar 

  • Pandey DK, Singh AK, Chaudhary B (2012) Boron-mediated plant somatic embryogenesis: a provocative model. J Bot vol. 2012 Article ID 375829, 9 pages

    Google Scholar 

  • Parimaladevi B, Boominathan R, Mandal SC (2003) Anti-inflammatory, analgesic and antipyretic properties of Clitoria ternatea root. Fitoterapia 74:345–349

    Article  Google Scholar 

  • Passos IRS, Bernacci LC (2005) Tissue culture applied to in vitro germplasm conservation and breeding of passionfruit (Passiflora spp.). In: Faleiro FG, Junqueira NTV, Braga MF (eds) Passionfruit: germplasm and breeding. Embrapa Cerrados, Planaltina, pp 361–383 (in Portuguese)

    Google Scholar 

  • Pavlović S, Vinterhalter B, Zdravković-Korać S, Vinterhalter D, Zdravković J, Cvikć D, Mitić N (2013) Recurrent somatic embryogenesis and plant regeneration from immature zygotic embryos of cabbage (Brassica oleracea var. capitata) and cauliflower (Brassica oleracea var. botrytis). Plant Cell Tiss Org Cult 113:397–406

    Article  CAS  Google Scholar 

  • Perez RM (2003) Antiviral activity of compounds isolated from plants. Pharm Biol 41:107–157

    Article  Google Scholar 

  • Pinto AP, Monteiro-Hara ACBA, Stipp LCL, Mendes BMJ (2010) In vitro organogenesis of Passiflora alata. In Vitro Cell Dev Biol Plant 46:28–33

    Article  Google Scholar 

  • Pinto DLP, de Almeida AMR, Rêgo MM, da Silva ML, de Oliveira EJ, Otoni WC (2011) Somatic embryogenesis from mature zygotic embryos of commercial passion fruit (Passiflora edulis Sims) genotypes. Plant Cell Tiss Org Cult 107:521–530

    Article  Google Scholar 

  • Pluemjai T, Saifah E (1986) Constituents of Cissus quadrangularis Linn. Thai J Pharm Sci 11:205–211

    Google Scholar 

  • Quiroz-Figueroa FR, Rojas-Herrera R, Galaz-Avalos RM, Loyola-Vargas VM (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tiss Org Cult 86:285–301

    Article  Google Scholar 

  • Raemakers CJJM, Jacobsen E, Visser RGF (1995) Secondary somatic embryogenesis and applications in plant breeding. Euphytica 81:93–107

    Article  Google Scholar 

  • Raghavan V (1986) Embryogenesis in angiosperms. A developmental and experimental study. Cambridge University Press, Cambridge, p 303

    Google Scholar 

  • Rai MJK, Shekhawat NS (2014) Recent advances in genetic engineering for improvement of fruit crops. Plant Cell Tiss Org Cult 116:1–15

    Article  CAS  Google Scholar 

  • Ram D, Banerjee MK, Pandey S, Srivastava U (2001) Collection and evaluation of Kartoli (Momordica dioica Roxb. Ex. Willd.). Indian J Plant Genet Resour 14:114–116

    Google Scholar 

  • Ramar K, Ganesan M, Lakshmi Prabha A, Nandagopalan V (2011) In vitro clonal propagation of wild Cissus quadrangularis by suspension culture mediated somatic embryogenesis. Int J App Biotechnol Biochem 1:1–14

    Google Scholar 

  • Rani AR, Reddy VD, Prakash BP, Padmaja G (2005) Changes in protein profiles associated with somatic embryogenesis in peanut. Biol Plant 49:347–354

    Article  CAS  Google Scholar 

  • Rashid MM (1976) Vegetable of Bangladesh. BARI, Joydebpur, p 494

    Google Scholar 

  • Reddy PS, Gopal GR, Sita GL (1998) In vitro multiplication of Gymnema sylvestre R. Br.-an important medicinal plant. Curr Sci 75:843–845

    Google Scholar 

  • Reddy G, Ravi Kumar B, Krishna Mohan G, Mullangi R (2006) Antihyperglycemic activity of Momordica dioica fruits in alloxan-induced diabetic rats. Asian J Pharmacodyna Pharmacokin 6:327–329

    Google Scholar 

  • Reinert J (1959) Untersuchungen über die Morphogenese an Gewebekulturen. Berichte der Deutschen Botanischen Gesellschaft 71:15

    Google Scholar 

  • Rocha DI, Monte-Bello CC, Dornelas MC (2015) Alternative induction of de novo shoot organogenesis or somatic embryogenesis from in vitro cultures of mature zygotic embryos of passion fruit (Passiflora edulis Sims) is modulated by the ratio between auxin and cytokinin in the medium. Plant Cell Tiss Org Cult 120:1087–1098

    Article  CAS  Google Scholar 

  • Rojas-Herrera R, Quiroz-Figueroa FR, Monforte-Gonźalez M, Śanchez-Teyer F, Loyola-Vargas VM (2002) Differential gene expression during somatic embryogenesis in Coffea arabica L., revealed by RT-PCR differential display. Mol Biotechnol 21:43–50

    Article  CAS  Google Scholar 

  • Rosa YBCJ, Bello CCM, Dornealas MC (2015) Species-dependent divergent responses to in vitro somatic embryo induction in Passiflora spp. Plant Cell Tiss Org Cult 120:69–77

    Article  CAS  Google Scholar 

  • Rout GR (2005) Micropropagation of Clitoria ternatea Linn. (Fabaceae)-an important medicinal plant. In Vitro Cell Dev Biol Plant 41:516–519

    Article  Google Scholar 

  • Sahai A, Shahzad A, Anis M (2010a) High frequency plant production via shoot organogenesis and somatic embryogenesis from callus in Tylophora indica, an endangered plant species. Turk J Bot 34:11–20

    CAS  Google Scholar 

  • Sahai A, Shahzad A, Sharma S (2010b) Histology of organogenesis and somatic embryogenesis in excised root cultures of an endangered species Tylophora indica (Asclepiadaceae). Aust J Bot 58:198–205

    Article  Google Scholar 

  • Sahni KC (1990) Gymnosperms of India and adjacent countries. Bishen Singh and Mahendra pal Singh, Dehradun

    Google Scholar 

  • Salunkhe CK, Rao PS, Mhatre M (1997) Induction of somatic embryogenesis and plantlets in tendrils of Vitis vinifera L. Plant Cell Rep 17:65–67

    Article  CAS  Google Scholar 

  • Saunders RMK (2000) Systematic botany monographs, vol 58, Schisandra (Schisandraceae). University of Michigan Herbarium, Michigan

    Google Scholar 

  • Schmidt EDL, Guzzo F, Toonen MAJ, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    CAS  PubMed  Google Scholar 

  • Schroeder CA (1968) Adventive embryogenesis in fruit pericarp tissue in vitro. Bot Gaz 129:374–376

    Article  Google Scholar 

  • Sharma SK, Millam S, Hein I, Bryan GJ (2008) Cloning and molecular characterization of a potato SERK gene transcriptionally induced during initiation of somatic embryogenesis. Planta 228:319–330

    Article  CAS  PubMed  Google Scholar 

  • Shirwaikar A, Khan S, Malini S (2003) Antiosteoporotic effect of ethanol extract of Cissus quadrangularis Linn. on ovariectomized rat. J Ethnopharmacol 89:245–250

    Article  PubMed  Google Scholar 

  • Shreedhar CS, Pai KSR, Vaidhya VP (2001) Postcoital antifertility activity of the root of Momordica dioica Roxb. Ind J Pharmaceut Sci 63:528–531

    Google Scholar 

  • Silva CV, Oliveira LS, Loriato VAP, Silva LC, Campos JMS, Viccini LF, Oliveira EJ, Otoni WC (2011) Organogenesis from root explants of commercial populations of Passiflora edulis Sims and a wild passionfruit species, P. cincinnata masters. Plant Cell Tiss Org Cult 107:407–416

    Article  Google Scholar 

  • Sivarajan VV, Balachandran I (1994) Ayurvedic drugs and their plant sources, vol 97. Oxford IBH, New Delhi, pp 289–290

    Google Scholar 

  • Smíšková A, Vlašínová H, Havel L (2005) Somatic embryogenesis from zygotic embryos of Schisandra chinensis. Biol Plant 49:451–454

    Article  Google Scholar 

  • Stamp JA, Meredith CP (1988a) Proliferative somatic embryogenesis from zygotic embryos of grapevines. J Am Soc Hortic Sci 113:941–945

    Google Scholar 

  • Stamp JA, Meredith CP (1988b) Somatic embryogenesis from leaves and anthers of grapevine. Sci Hortic 35:235–250

    Article  Google Scholar 

  • Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells. II: organization in cultures grown from freely suspended cells. Am J Bot 45:705–708

    Article  Google Scholar 

  • Street HE, Withers LA (1974) The anatomy of embryogenesis in culture. In: Street HE (ed) Tissue culture and plant science 1974. Proceedings 3rd international congress of plant tissue and cell culture, University of Leicester, Leicester. Academic Press, London, pp. 71–100

    Google Scholar 

  • Talapatra S, Ghoshal N, Raychaudhury SS (2014) Molecular characterization, modeling and expression analysis of a somatic embryogenesis receptor kinase (SERK) gene in Momordica charantia L. during somatic embryogenesis. Plant Cell Tiss Org Cult 116:271–283

    Article  CAS  Google Scholar 

  • Taranalli AD, Cheeramkuzhy TC (2003) Influence of Clitoria ternatea extracts on memory and cerebro cholinergic activity in rats. Pharm Biol 38:51–56

    Article  Google Scholar 

  • Terzi M, Lo Schiavo F (1990) Somatic embryogenesis. In: Bhojwani SS (ed) Plant tissue culture: applications and limitations. Elsevier, Amsterdam, pp 54–66

    Chapter  Google Scholar 

  • Thiruvengadam M, Varisai Mohamed S, Yang CH, Jayabalan N (2006) Development of an embryogenic suspension culture of bitter melon (Momordica charantia L.). Sci Hortic 109:123–129

    Article  CAS  Google Scholar 

  • Thiruvengadam M, Rekha KT, Jayabalan N, Praveen N, Kim EM, Chung IM (2013) Effect of exogenous polyamines enhances somatic embryogenesis via suspension cultures of spine gourd (Momordica dioica Roxb. ex. Willd.). Aust J Crop Sci 7:446–453

    CAS  Google Scholar 

  • Tisserat B, Esan EB, Murashige T (1979) Somatic embryogenesis in angiosperms. Hortic Rev 1:1–77

    Google Scholar 

  • Vasil IK, Hildebrandt AC (1966) Variations of morphogenetic behavior in plant tissue cultures. Cichorium endivia. Am J Bot 53:860–869

    Article  Google Scholar 

  • Vieira MLC, Carneiro MS (2004) Passiflora spp., passionfruit. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI Publishing, Wallingford, pp 435–453

    Google Scholar 

  • Vieira MLC, Oliveira EJ, Matta FP, Pádua JG, Monteiro M (2005) Biotechnological methods applied to passionfruit breeding. In: Faleiro FG, Junqueira NTV, Braga MF (eds) Passionfruit: germplasm and breeding. Embrapa Cerrados, Planaltina, pp 411–453 (in Portuguese)

    Google Scholar 

  • von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tiss Org Cult 69:233–249

    Article  Google Scholar 

  • Webber JM (1940) Polyembryony. Bot Rev 6:575–598

    Article  CAS  Google Scholar 

  • Weigel D, Jurgens G (2002) Stem cells that make stems. Nature 415:751–754

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Huang H (2014) Genetic and epigenetic controls of plant regeneration. Curr Top Dev Biol 108:1–33

    Article  PubMed  CAS  Google Scholar 

  • Yang JL, Niu YD, Yang CP, Liu GF, Li CH (2011) Induction of somatic embryogenesis from female flower buds of elite Schisandra chinensis. Plant Cell Tiss Org Cult 106:391–399

    Article  CAS  Google Scholar 

  • Yoganarasimhan SN (2000) Medicinal plants of India, vol 2. Interline Publishing Co, Bangalore, pp 146–147

    Google Scholar 

  • Zeng F, Zhang X, Zhu L, Tu L, Guo X, Nie Y (2006) Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol 60:167–183

    Article  CAS  PubMed  Google Scholar 

  • Zerbini FM, Otoni WC, Vieira MLC (2008) Passionfruit. In: Kole C, Hall TC (eds) A compendium of transgenic crop plants-tropical and subtropical fruit and nuts, vol 5, 1st edn. Wiley, Berlin, pp 213–234

    Chapter  Google Scholar 

  • Zhang J-H, Zhang S-G, Li S-G, Han S-Y, Li W-F, Li X-M, Qi L-W (2014) Regulation of synchronism by abscisic-acid-responsive small non-coding RNAs during somatic embryogenesis in larch (Larix leptolepis). Plant Cell Tiss Org Cult 116:361–370

    Article  CAS  Google Scholar 

  • Zuo JR, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Dr. Shiwali Sharma is thankful to DST, for the award of Young Scientist under Fast Track Scheme, and SERB (vide no. SB/FT/LS-364/2012) for providing research assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Shahzad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shahzad, A., Sharma, S., Siddiqui, S.A. (2016). Somatic Embryogenesis: A Valuable Strategy for Phyto-Climbing Diversity Conservation. In: Shahzad, A., Sharma, S., Siddiqui, S. (eds) Biotechnological strategies for the conservation of medicinal and ornamental climbers. Springer, Cham. https://doi.org/10.1007/978-3-319-19288-8_7

Download citation

Publish with us

Policies and ethics