Skip to main content

Training in Realistic Virtual Environments: Impact on User Performance in a Motor Imagery-Based Brain–Computer Interface

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2015)

Abstract

A brain–computer interface (BCI) is a system that enables people to control an external device by means of their brain activity, without the need of performing muscular activity. BCI systems are normally first tested on a controlled environment before being used in a real, daily scenario. While this is due to security reasons, the conditions that BCI systems users will eventually face in their usual environment may affect their performance in an unforeseen way. In this paper, we try to bridge this gap by presenting a trained BCI user a virtual environment that includes realistic distracting stimuli and testing whether the complexity or the type of such stimuli affects user performance. 11 subjects navigated two virtual environments: a static park and the same one with visual and auditory stimuli simulating typical distractors from a real park. No significant differences were found when using a realistic environment; in other words, the presence of different distracting stimuli did not worsen user performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neuper, C., Scherer, R., Wriessnegger, S., Pfurtscheller, G.: Motor imagery and action observation: Modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Clinical Neurophysiology 120(2), 239–247 (2009). doi:10.1016/j.clinph.2008.11.015

    Article  Google Scholar 

  2. McCane, L.M., Sellers, E.W., Mcfarland, D.J., Mak, J.N., Carmack, C.S., Zeitlin, D., et al.: Brain-computer interface (BCI) evaluation in people with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 15(3–4), 207–215 (2014). doi:10.3109/21678421.2013.865750

    Article  Google Scholar 

  3. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clinical Neurophysiology 113(6), 767–791 (2002)

    Article  Google Scholar 

  4. Leamy, D. J., Kocijan, J., Domijan, K., Duffin, J., Roche, R. A., Commins, S. R., et al.: An exploration of EEG features during recovery following stroke - implications for BCI-mediated neurorehabilitation therapy. Journal of NeuroEngineering and Rehabilitation 11(1) (2014). doi:10.1186/1743-0003-11-9

  5. Lotte, F., Larrue, F., & Mühl, C.: Flaws in current human training protocols for spontaneous brain-computer interfaces: Lessons learned from instructional design. Frontiers in Human Neuroscience, (SEP) (2013). doi:10.3389/fnhum.2013.00568

  6. Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H., Pfurtscheller, G.: Brain-computer communication: Motivation, aim, and impact of exploring a virtual apartment. IEEE Transactions on Neural Systems and Rehabilitation Engineering 15(4), 473–482 (2007)

    Article  Google Scholar 

  7. Ron-Angevin, R., Díaz-Estrella, A.: Brain-computer interface: Changes in performance using virtual reality techniques. Neuroscience Letters 449(2), 123–127 (2009)

    Article  Google Scholar 

  8. Velasco-Álvarez, F., Ron-Angevin, R., da Silva-Sauer, L., Sancha-Ros, S.: Audio-cued motor imagery-based brain–computer interface: Navigation through virtual and real environments. Neurocomputing 121, 89–98 (2013). doi:10.1016/j.neucom.2012.11.038

    Article  Google Scholar 

  9. Kübler, A., Neumann, N., Kaiser, J., Kotchoubey, B., Hinterberger, T., Birbaumer, N.P.: Brain-computer communication: Self-regulation of slow cortical potentials for verbal communication. Archives of Physical Medicine and Rehabilitation 82(11), 1533–1539 (2001)

    Article  Google Scholar 

  10. Guger, C., Schlögl, A., Neuper, C., Walterspacher, D., Strain, T., Pfurtscheller, G.: Rapid prototyping of an EEG-based brain-computer interface (BCI). IEEE Transactions on Neural Systems and Rehabilitation Engineering 9(1), 49–58 (2001)

    Article  Google Scholar 

  11. Guger, C., Edlinger, G., Harkam, W., Niedermayer, I., Pfurtscheller, G.: How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Transactions on Neural Systems and Rehabilitation Engineering 11(2), 145–147 (2003)

    Article  Google Scholar 

  12. Foldes, S.T., & Taylor, D.M.: Speaking and cognitive distractions during EEG-based brain control of a virtual neuroprosthesis-arm. Journal of NeuroEngineering and Rehabilitation 10(1) (2013). doi:10.1186/1743-0003-10-116

  13. Friedrich, E.V.C., Scherer, R., Sonnleitner, K., Neuper, C.: Impact of auditory distraction on user performance in a brain-computer interface driven by different mental tasks. Clinical Neurophysiology 122(10), 2003–2009 (2011). doi:10.1016/j.clinph.2011.03.019

    Google Scholar 

  14. Kleih, S.C., Nijboer, F., Halder, S., Kübler, A.: Motivation modulates the P300 amplitude during brain-computer interface use. Clinical Neurophysiology 121(7), 1023–1031 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Velasco-Álvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

da Silva-Sauer, L., Valero-Aguayo, L., Velasco-Álvarez, F., Varona-Moya, S., Ron-Angevin, R. (2015). Training in Realistic Virtual Environments: Impact on User Performance in a Motor Imagery-Based Brain–Computer Interface. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2015. Lecture Notes in Computer Science(), vol 9094. Springer, Cham. https://doi.org/10.1007/978-3-319-19258-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19258-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19257-4

  • Online ISBN: 978-3-319-19258-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics