Skip to main content

Couplet Supertree Based Species Tree Estimation

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9096))

Included in the following conference series:

  • 1965 Accesses

Abstract

Inference of a species tree from multi-locus gene trees having topological incongruence due to incomplete lineage sorting (ILS), is currently performed by either consensus (supertree), parsimony analysis (minimizing deep coalescence), or statistical methods. However, statistical approaches involve huge computational complexity. Accuracy of approximation heuristics used in either consensus or parsimony analysis, also varies considerably. We propose COSPEDSpec, a novel two stage species tree estimation method, combining both consensus and parsimony approaches. First stage uses our earlier proposed couplet supertree technique COSPEDTree [2][3], whereas the second stage proposes a greedy heuristic to refine a non-binary (unresolved) supertree into a binary species tree. During each iteration, it reduces the number of extra lineages between the current species tree and the input gene trees, thus modeling ILS as the cause of gene tree / species tree incongruence. COSPEDSpec incurs time and space complexity lower or equal to the reference methods. For large scale datasets having hundreds of taxa and thousands of gene trees, COSPEDSpec produces species trees with lower branch dissimilarities and much less computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bayzid, M.S., Warnow, T.: Estimating optimal species trees from incomplete gene trees under deep coalescence. Journal of Computational Biology 19(6), 591–605 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bhattacharyya, S., Mukherjee, J.: Cospedtree: Couplet supertree by equivalence partitioning of taxa set and dag formation. IEEE/ACM Trans. Comp. Biol. Bioinfo. 1, 1 (2014), doi:10.1109/TCBB.2014.2366778 (preprints)

    Google Scholar 

  3. Bhattacharyya, S., Mukhopadhyay, J.: Couplet supertree by equivalence partitioning of taxa set and dag formation. In: 5th ACM Conference on Bioinformatics, Computational Biology and Health Informatics (ACM-BCB), pp. 259–268 (2014)

    Google Scholar 

  4. Chaudhary, R., Bansal, M.S., Wehe, A., Fernández-Baca, D., Eulenstein, O.: igtp: a software package for large-scale gene tree parsimony analysis. BMC Bioinformatics 23(574), 1–7 (2010)

    Google Scholar 

  5. Chaudhary, R., Burleigh, J.G., Fernández-Baca, D.: Inferring species trees from incongruent multi-copy gene trees using the robinson-foulds distance. Algorithms for Molecular Biology 8(1(28)), 1–12 (2013)

    Google Scholar 

  6. DeGiorgio, M., Degnan, J.H.: Fast and consistent estimation of species trees using supermatrix rooted triples. Mol. Biol Evol. 27(3), 552–569 (2010)

    Article  Google Scholar 

  7. Degnan, J.H., Rosenberg, N.A.: Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology and Evolution 24(6), 332–340 (2009)

    Article  Google Scholar 

  8. Durand, D., Halldorsson, B.V., Vernot, B.: A hybrid micro-macroevolutionary approach to gene tree reconstruction. Journal of Computational Biology 13(2), 320–335 (2005)

    Article  MathSciNet  Google Scholar 

  9. Edwards, S.V., Liu, L., Pearl, D.K.: High-resolution species trees without concatenation. PNAS 104(14), 5936–5941 (2007)

    Article  Google Scholar 

  10. Heled, J., Drummond, A.J.: Bayesian inference of species trees from multilocus data. Mol. Biol. E 27(3), 570–580 (2010)

    Article  Google Scholar 

  11. Helmkamp, L.J., Jewett, E.M., Rosenberg, N.A.: Improvements to a class of distance matrix methods for inferring species trees from gene trees. Journal of Computational Biology 19(6), 632–649 (2012)

    Article  MathSciNet  Google Scholar 

  12. Jewett, E.M., Rosenberg, N.A.: iglass: An improvement to the glass method for estimating species trees from gene trees. Journal of Computational Biology 19(3), 293–315 (2012)

    Article  MathSciNet  Google Scholar 

  13. Kubatko, L.S., Carstens, B.C., Knowles, L.: Stem: species tree estimation using maximum likelihood for gene trees under coalescence. Bioinformatics 25(7), 971–973 (2009)

    Article  Google Scholar 

  14. Kuo, C.H., Wares, J.P., Kissinger, J.C.: The apicomplexan whole-genome phylogeny: An analysis of incongurence among gene trees. Mol. Biol. Evol. 25(12), 2689–2698 (2008)

    Article  Google Scholar 

  15. Larget, B.R., Kotha, S.K., Dewey, C.N., Ané, C.: Bucky: Gene tree / species tree reconciliation with bayesian concordance analysis. Bioinformatics 26(22), 2910–2911 (2010)

    Article  Google Scholar 

  16. Liu, L., Yu, L., Edwards, S.V.: A maximum pseudo-likelihood approach for estimating species trees under the coalescent model. BMC Evolutionary Biology 10(302), 1–18 (2010)

    MATH  Google Scholar 

  17. Liu, L., Yu, L., Pearl, D.K.: Maximum tree: a consistent estimator of the species tree. J. Math. Biol. 60(1), 95–106 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Liu, L., Yu, L., Pearl, D.K., Edwards, S.V.: Estimating species phylogenies using coalescence times among sequences. Syst. Biol. 58(5), 468–477 (2009)

    Article  Google Scholar 

  19. Maddison, W.P., Knowles, L.L.: Inferring phylogeny despite incomplete lineage sorting. Syst. Biol. 55(1), 21–30 (2006)

    Article  Google Scholar 

  20. Mirarab, S., Reaz, R., Bayzid, M.S., Zimmermann, T., Swenson, M.S., Warnow, T.: Astral: genome-scale coalescent-based species tree estimation. Bioinformatics 30(17), i541–i548 (2014)

    Google Scholar 

  21. Mossel, E., Roch, S.: Incomplete lineage sorting: Consistent phylogeny estimation from multiple loci. IEEE/ACM Trans. Comp. Biol. Bioinfo. 7(1), 166–171 (2010)

    Article  Google Scholar 

  22. Nakhleh, L.: Computational approaches to species phylogeny inference and gene tree reconciliation. Trends in Ecology and Evolution 28(12), 719–728 (2013)

    Article  Google Scholar 

  23. Robinson, D.R., Foulds, L.R.: Comparison of phylogenetic trees. Mathematical Biosciences 53(1-2), 131–147 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rokas, A., Williams, B., King, N., Carroll, S.: Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425, 798–804 (2003)

    Article  Google Scholar 

  25. Salichos, L., Rokas, A.: Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497(7449), 327–333 (2013)

    Article  Google Scholar 

  26. Song, S., Liu, L., Edwards, S.V., Wu, S.: Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc. Natl. Acad. Sci. USA 109(37), 14942–14947 (2012)

    Article  Google Scholar 

  27. Springer, M.S., Burk-Herrick, A., Meredith, R., Eizirik, E., Teeling, E., O’Brien, S.J., Murphy, W.J.: The adequacy of morphology for reconstructing the early history of placental mammals. Syst. Biol. 56(4), 673–684 (2007)

    Article  Google Scholar 

  28. Stamatakis, A.: Raxml-vi-hpc: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006)

    Article  Google Scholar 

  29. Sukumaran, J., Holder, M.T.: Dendropy: a python library for phylogenetic computing. Bioinformatics 26(12), 1569–1571 (2000)

    Article  Google Scholar 

  30. Than, C., Nakhleh, L.: Species tree inference by minimizing deep coalescences. PLOS Computational Biology 5(9), 1–12 (2009)

    Article  MathSciNet  Google Scholar 

  31. Yang, J., Warnow, T.: Fast and accurate methods for phylogenomic analyses. BMC Bioinformatics 12(9), 1–12 (2011)

    Google Scholar 

  32. Yu, Y., Warnow, T., Nakhleh, L.: Algorithms for mdc-based multi-locus phylogeny inference: Beyond rooted binary gene trees on single alleles. Journal of Computational Biology 18(11), 1543–1559 (2011)

    Article  MathSciNet  Google Scholar 

  33. Zimmermann, T., Mirarab, S., Warnow, T.: Bbca: Improving the scalability of *beast using random binning. BMC Genomics 15(suppl. 6)(S11), 1–9 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourya Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bhattacharyya, S., Mukhopadhyay, J. (2015). Couplet Supertree Based Species Tree Estimation. In: Harrison, R., Li, Y., Măndoiu, I. (eds) Bioinformatics Research and Applications. ISBRA 2015. Lecture Notes in Computer Science(), vol 9096. Springer, Cham. https://doi.org/10.1007/978-3-319-19048-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19048-8_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19047-1

  • Online ISBN: 978-3-319-19048-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics