Skip to main content

Spatial Repulsion Between Markers Improves Watershed Performance

  • Conference paper
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2015)

Abstract

The Watershed Transformation is a powerful segmentation tool from Mathematical Morphology. Here we focus on the markers selection step. We hypothesize that introducing some kind of repulsion between them leads to improved segmentation results when dealing with natural images. To do so, we compare the usual watershed transformation to waterpixels, i.e. regular superpixels based on the watershed transformation which include a regularity constraint on the spatial distribution of their markers. Both methods are evaluated on the Berkeley segmentation database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beucher, S., Lantujoul, C.: Use of watershed in contour detection. In: International Workshop on Image Processing: Real-Time Edge and Motion Estimation (1979)

    Google Scholar 

  2. Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. In: Dougherty, E. (ed.) Mathematical Morphology in Image Processing, pp. 433–481 (1993)

    Google Scholar 

  3. Meyer, F.: Un algorithme optimal pour la ligne de partage des eaux. 8ème congrès de reconnaissance des formes et intelligence artificielle, Lyon, France, vol. 2, pp. 847-857 (November 1991)

    Google Scholar 

  4. Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)

    Article  Google Scholar 

  5. Andres, B., Köthe, U., Helmstaedter, M., Denk, W., Hamprecht, F.: Segmentation of SBFSEM Volume Data of Neural Tissue by Hierarchical Classification. In: Pattern Recognition, vol. D, pp. 142–152 (2008)

    Google Scholar 

  6. Stawiaski, J., Decencière, E.: Interactive liver tumor segmentation using watershed and graph cuts. In: Segmentation in the Clinic: A Grand Challenge II (MICCAI 2008 Workshop), New York, USA (2008)

    Google Scholar 

  7. Meyer, F., Beucher, S.: Morphological segmentation. JVCIR 1(1), 21–46 (1950)

    Google Scholar 

  8. Angulo, J., Jeulin, D.: Stochastic watershed segmentation. In: Banon, G., et al. (eds.) Proc. Int. Symp. Mathematical Morphology, ISSM 2007, pp. 265–276 (2007)

    Google Scholar 

  9. Vachier, C., Meyer, F.: Extinction Values: A New Measurement of Persistence. In: IEEE Workshop on Non Linear Signal/Image Processing, pp. 254-257 (1995)

    Google Scholar 

  10. Machairas, V., Faessel, M., Cárdenas-Peña, D., Chabardes, T., Walter, T., Decenciére, E.: Waterpixels. In: Under revision for IEEE Transaction on Image Processing (2015)

    Google Scholar 

  11. Machairas, V., Walter, T., Decenciére, E., Waterpixels: Superpixels based on the watershed transformation. In: International Conference on Image Processing (ICIP), pp. 4343–4347 (October 2014)

    Google Scholar 

  12. Ren, X., Malik, J.: Learning a classification model for segmentation. In: International Conference on Computer Vision, vol. 1, pp. 10–17 (2003)

    Google Scholar 

  13. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Int. Conf. on Computer Vision, vol. 2, pp. 416–423 (July 2001)

    Google Scholar 

  14. Kulesza, A., Taskar, B.: Determinantal point processes for machine learning. Foundations and Trends in Machine Learning 5(2-3), 123–286 (2013)

    Article  Google Scholar 

  15. Erkut: The discrete p-dispersion problem. European Journal of Operational Research, 6, 48–60 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaïa Machairas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Machairas, V., Decencière, E., Walter, T. (2015). Spatial Repulsion Between Markers Improves Watershed Performance. In: Benediktsson, J., Chanussot, J., Najman, L., Talbot, H. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2015. Lecture Notes in Computer Science(), vol 9082. Springer, Cham. https://doi.org/10.1007/978-3-319-18720-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18720-4_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18719-8

  • Online ISBN: 978-3-319-18720-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics