Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 359))

Abstract

We study the computational properties of solving a constrained L 1-L 2 minimization via a difference of convex algorithm (DCA), which was proposed in our previous work [13,19] to recover sparse signals from a under-determined linear system. We prove that the DCA converges to a stationary point of the nonconvex L 1-L 2 model. We clarify the relationship of DCA to a convex method, Bregman iteration [20] for solving a constrained L 1 minimization. Through experiments, we discover that both L 1 and L 1-L 2 obtain better recovery results from more coherent matrices, which appears unknown in theoretical analysis of exact sparse recovery. In addition, numerical studies motivate us to consider a weighted difference model L 1-αL 2 (α > 1) to deal with ill-conditioned matrices when L 1-L 2 fails to obtain a good solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  2. Bregman, L.: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Comp. Math. Math. Phys. (7), 200–217 (1967)

    Google Scholar 

  3. Candès, E.J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59, 1207–1223 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Candès, E., Fernandez-Granda, C.: Super-resolution from noisy data. J. Fourier Anal. Appl. 19(6), 1229–1254 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 3869–3872 (2008)

    Google Scholar 

  6. Donoho, D., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization. Proc. Nat. Acad. Scien. 100, 2197–2202 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory 47(7), 2845–2862 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  10. Fannjiang, A., Liao, W.: Coherence pattern-guided compressive sensing with unresolved grids. SIAM J. Imaging Sci. 5(1), 179–202 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gribonval, R., Nielsen, M.: Sparse representations in unions of bases. IEEE Trans. Inf. Theory 49(12), 3320–3325 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lai, M.J., Xu, Y., Yin, W.: Improved iteratively reweighted least squares for unconstrained smoothed lq minimization. SIAM J. Numer. Anal. 5(2), 927–957 (2013)

    Article  MathSciNet  Google Scholar 

  13. Lou, Y., Yin, P., He, Q., Xin, J.: Computing sparse representation in a highly coherent dictionary based on difference of l1 and l2. J. Sci. Comput. (2014) (to appear)

    Google Scholar 

  14. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput., 227–234 (1995)

    Google Scholar 

  15. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterated regularization method for total variation-based image restoration. Multiscale Model. Simul. (4), 460–489 (2005)

    Google Scholar 

  16. Pham-Dinh, T., Le-Thi, H.A.: Convex analysis approach to d.c. programming: Theory, algorithms and applications. Acta Math. Vietnam. 22(1), 289–355 (1997)

    MATH  MathSciNet  Google Scholar 

  17. Pham-Dinh, T., Le-Thi, H.A.: A d.c. optimization algorithm for solving the trust-region subproblem. SIAM J. Optim. 8(2), 476–505 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Xu, Z., Chang, X., Xu, F., Zhang, H.: l 1/2 regularization: A thresholding representation theory and a fast solver. IEEE Trans. Neural Netw. 23, 1013–1027 (2012)

    Article  Google Scholar 

  19. Yin, P., Lou, Y., He, Q., Xin, J.: Minimization of l 1 − l 2 for compressed sensing. SIAM J. Sci. Comput. (2014) (to appear)

    Google Scholar 

  20. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for l1 minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1, 143–168 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lou, Y., Osher, S., Xin, J. (2015). Computational Aspects of Constrained L 1-L 2 Minimization for Compressive Sensing. In: Le Thi, H., Pham Dinh, T., Nguyen, N. (eds) Modelling, Computation and Optimization in Information Systems and Management Sciences. Advances in Intelligent Systems and Computing, vol 359. Springer, Cham. https://doi.org/10.1007/978-3-319-18161-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18161-5_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18160-8

  • Online ISBN: 978-3-319-18161-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics