Skip to main content

Neural Basis of Drug Addiction

  • Chapter
  • First Online:
Drug Abuse in Adolescence

Abstract

Drug addiction is defined as a chronically relapsing disorder, characterized by the compulsion to seek and take drugs, a loss of inhibition in the ability to control amount of intake, and the development of a negative hedonic state when access to drug is prohibited. According to Koob and Le Moal, there is a spiraling distress cycle of addiction that is comprised of social, psychiatric, and neurobiological mechanisms. The underlying neurobiological systems involved in the addiction cycle are quite complex, and no single mechanism mediates this process. Although there is a constellation of underlying neural pathways and processes involved in the rewarding effects of drugs of abuse, the scope of this chapter will be limited to the mesocorticolimbic reward circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koob GF, Le Moal M. Drug abuse: hedonic homeostatic dysregulation. Science. 1997;278:
52–8.

    Article  PubMed  Google Scholar 

  2. Koob GF, Le Moal M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology. 2001;24(2):97–126.

    Article  PubMed  Google Scholar 

  3. Iversen LL, Iversen SD, Bloom FE, Roth RH. Introduction to neuropsychopharmacology. In: Introduction to neuropsychopharmacology. New York: Oxford University Press; 2009.

    Google Scholar 

  4. Le Moal M, Koob GF. Drug addiction: pathways to the disease and pathophysiological perspectives. Eur Neuropsychopharmacol. 2007;17:377–393.

    Google Scholar 

  5. Kalivas PW. Glutamate systems in cocaine addiction. Curr Opin Pharmacol. 2004;4(23):
23–9.

    Article  PubMed  Google Scholar 

  6. Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry. 2005;162:1403–13.

    Article  PubMed  Google Scholar 

  7. Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci. 2009;10:561–72.

    Article  PubMed  Google Scholar 

  8. Bossert JM, Gray S, Lu L, Shaham Y. Activation of group II metabotropic receptors in the nucleus accumbens shell attenuates context-induced relapse to heroin seeking. Neuropsychopharmacology. 2006;31:2197–209.

    PubMed Central  PubMed  Google Scholar 

  9. Peters J, Kalivas PW. The group II metabotropic glutamate receptor agonist, LY379268, inhibits both cocaine- and food-seeking behavior in rats. Psychopharmacology (Berl). 2006;186:143–9.

    Article  Google Scholar 

  10. Weinshanker D, Schroeder JP. There and back again: a tale of norepinephrine in drug addiction. Neuropsychopharmacology. 2007;32:1433–51.

    Article  Google Scholar 

  11. Aston-Jones G, Harris GC. Brain substrates for increased drug seeking during protracted withdrawal. Neuropsychopharmacology. 2004;47:167–79.

    Google Scholar 

  12. Volkow ND, Fowler JS, Wang GJ, Baler R, Telang F. Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology. 2009;56:3–8.

    Article  PubMed Central  PubMed  Google Scholar 

  13. McFarland K, Kalivas PW. The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J Neurosci. 2001;21(21):8655–63.

    PubMed  Google Scholar 

  14. Cosgrove K. Imaging receptor changes in human drug abusers. Curr Top Behav Neurosci. 2010;3:199–217.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Berridge KC. The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology. 2007;191:391–431.

    Article  PubMed  Google Scholar 

  16. Winstanley CA, Theobald DEH, Dalley JW, Cardinal RN, Robbins TW. Double dissociation between serotonergic and dopaminergic modulation of medial prefrontal and orbitofrontal cortex during a test of impulsive choice. Cereb Cortex. 2006;16(1):106–14.

    Article  PubMed  Google Scholar 

  17. Chambers RA, Taylor JR, Potenza MN. Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. Am J Psychiatry. 2003;160:1041–52.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Brown GL, Linnoila MI. CSF serotonin metabolite (5-HIAA) studies in depression, impulsivity, and violence. J Clin Psychiatry. 1990;51:31–41.

    PubMed  Google Scholar 

  19. Nordin C, Eklundh T. Altered CSF 5-HIAA disposition in pathological male gamblers. CNS Spectr. 1999;4:25–33.

    PubMed  Google Scholar 

  20. Kalivas PW, Volkow N, Seamans J. Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron. 2005;45:647–50.

    Article  PubMed  Google Scholar 

  21. Ahmed SH, Lin D, Koob GF, Parsons LH. Escalation of cocaine self administration does not depend on altered cocaine-induced nucleus accumbens dopamine levels. J Neurochem. 2003;86(1):102–13.

    Article  PubMed  Google Scholar 

  22. Lynch WJ, Nicholson KL, Dance ME, Morgan RW, Foley PL. Animal models of substance abuse and addiction: implications for science, animal welfare, and society. Comp Med. 2010;60(3):177–88.

    PubMed Central  PubMed  Google Scholar 

  23. Overmier JB. On the nature of animal models of human behavioral dysfunction. In: Haug M, Whalen RE, Editors. Animal models of human emotion and cognition. Washington, DC: American Psychological Association; 1999. pp. 15–24.

    Chapter  Google Scholar 

  24. Domjan M. The principles of learning and behavior. 5 Ed. Belmont: Wadsworth; 2003.

    Google Scholar 

  25. Ferster CB, Skinner BF. Schedules of reinforcement. New York: Appleton Century-Crofts; 1957.

    Book  Google Scholar 

  26. Carroll ME, Lac ST. Autoshaping i.v. cocaine self-administration in rats: effects of nondrug alternative reinforcers on acquisition. Psychopharmacology (Berl). 1993;110:5-12.

    Google Scholar 

  27. Ahmed SH, Koob GF. Transition from moderate to excessive drug intake: change in hedonic set point. Science. 1998;282:298–300.

    Article  PubMed  Google Scholar 

  28. Ahmed SH, Koob GF. Long-lasting increase in the set point for cocaine self-administration after escalation in rats. Psychopharmacology. 1999;146:303–12.

    Article  PubMed  Google Scholar 

  29. Ahmed SH, Koob GF. Changes in response to a dopamine receptor antagonist in rats with escalating cocaine intake. Psychopharmacology. 2004;172:450–4.

    Article  PubMed  Google Scholar 

  30. Ahmed SH, Koob GF. Transition to drug addiction: a negative reinforcement model based on an allostatic decrease in reward function. Psychopharmacology. 2005;180:473–90.

    Article  PubMed  Google Scholar 

  31. Gipson CD, Bardo MT. Extended access to amphetamine self administration increases impulsive choice in a delay discounting task in rats. Psychopharmacology. 2009;207:391–400.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Kitamura O, Wee S, Specio SE, Koob GF, Pulvirenti L. Escalation of methamphetamine self administration in rats: a dose effect function. Psychopharmacology. 2006;186(1):48–53.

    Article  PubMed  Google Scholar 

  33. Ahmed SH, Walker JR, Koob GF. Persistent increase in the motivation to take heroin in rats with a history of drug escalation. Neuropsychopharmacology. 2000;22:413–21.

    Article  PubMed  Google Scholar 

  34. Beckmann JS, Gipson CD, Marusich JA, Bardo MT. Stimulus control of escalated cocaine intake and escalation under short access sessions. (in review)

    Google Scholar 

  35. Ahmed SH, Kenny PJ, Koob GF, Markou A. Neurobiological evidence for hedonic allostasis associated with escalating cocaine use. Nature Neurosci. 2002;5:625–6.

    PubMed  Google Scholar 

  36. Knackstedt LA, Moussawi K, Lalumiere R, Schwendt M, Klugmann M, Kalivas PW. Extinction training after cocaine self-administration induces glutamatergic plasticity to inhibit cocaine seeking. J Neurosci. 2010;30(23):7984–92.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Bouton ME, Bolles RC. Contextual control of the extinction of conditioned fear. Learn Motivation. 1979;10:445–66.

    Article  Google Scholar 

  38. Crombag HS, Shaham Y. Renewal of drug seeking by contextual cues after prolonged extinction in rats. Behav Neurosci. 2002;116:169–73.

    Article  PubMed  Google Scholar 

  39. Crombag HS, Bossert JM, Koya E, Shaham Y. Context-induced relapse to drug seeking: a review. Philos Trans Royal Soc. 2008;363:3233–43.

    Article  Google Scholar 

  40. Epstein DH, Preston KL, Stewart J, Shaham Y. Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology (Berl). 2006;189(1):
1–16.

    Article  Google Scholar 

  41. Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005;8(11):1481–9.

    Article  PubMed  Google Scholar 

  42. Zapata A, Minney VL, Shippenberg TS. Shift from goal-directed to habitual cocaine seeking after prolonged experience in rats. J Neurosci. 2010;30(46):15457–63.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Ann Rev Neurosci. 2006;29:565–98.

    Article  PubMed  Google Scholar 

  44. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F, Baler R. Addiction: decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain’s control circuit. BioEssays. 2010;32(9):748–55.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Brown PL, Jenkins HM. Auto-shaping the pigeon’s key peck. J Exp Anal Behav. 1968;11:
1–8.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Beckmann JS, Marusich JA, Gipson CD, Bardo MT. Novelty seeking, incentive salience and acquisition of cocaine self-administration in the rat. Behav Brain Res. 2010;216(1):159–65.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Robinson TE, Flagel SB. Dissociating the predictive and incentive motivational properties of reward-related cues through the study of individual differences. Biol Psychiatry. 2009;65:869–873.

    Google Scholar 

  48. Phillips PE, Stuber GD, Heien ML, Wightman RE, Carelli RM. Subsecond dopamine release promotes cocaine seeking. Nature. 2003;422:614–8.

    Article  PubMed  Google Scholar 

  49. Kelley AE. Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron. 2004;44:161–79.

    Article  PubMed  Google Scholar 

  50. Berke JD, Hyman SE. Addiction, dopamine, and the molecular mechanisms of memory. Neuron. 2000;25:515–32.

    Article  PubMed  Google Scholar 

  51. de Wit H. Impulsivity as a determinant and consequence of drug use: a review of underlying processes. Addict Biol. 2009;14:22–31.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Winstanley CA. The neural and neurochemical basis of delay discounting. In: Madden GJ, Bickel WK, editors. Impulsivity: the behavioral and neurological science of discounting. Washington DC: American Psychological Association; 2010.

    Google Scholar 

  53. Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ. Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science. 2001;292:2499–501.

    Article  PubMed  Google Scholar 

  54. Winstanley CA, Bachtell RK, Theobald DE, Laali S, Green TA, Kumar A, Chakravarty S, Self DW, Nestler EJ. Increased impulsivity during withdrawal from cocaine self-administration: role for DeltaFosB in the orbitofrontal cortex. Cereb Cortex. 2009;19:435–444.

    Google Scholar 

  55. Pattij T, Vanderschuren LJ. The neuropharmacology of impulsive behavior. Trends Pharmacol Sci. 2008;29(4):192–99.

    Article  PubMed  Google Scholar 

  56. Volkow ND, Fowler JS, Wang GJ, Hitzemann R, Logan J, Schlyer DJ, Dewey SL, Wolf AP. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse. 1993;14:169–77.

    Article  PubMed  Google Scholar 

  57. Franklin TR, Acton PD, Maldjian JA, Gray JD, Croft JR, Dackis CA, O’Brien CP, Childress AR. Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biol Psychiatry. 2002;51(2):134–42.

    Article  PubMed  Google Scholar 

  58. Winstanley CA, Dalley JW, Theobald DEH, Robbins TW. Fractionating impulsivity: contrasting effects of central 5-HT depletion on different measures of impulsive behavior. Neuropsychopharmacology. 2004;29:1331–43.

    Article  PubMed  Google Scholar 

  59. Mobini S, Body S, Ho MY, Bradshaw CM, Szabadi E, Deakin JFW, Anderson IM. Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology. 2002;160:290–98.

    Article  PubMed  Google Scholar 

  60. Gipson CD, Lee DC, Kelly TH, Kalivas PW, Bardo MT. Impulsivity as a risk-related multi-faceted construct relevant to drug abuse: a translational and neurobiological review. (in preparation).

    Google Scholar 

  61. Cardinal RN, Parkinson JA, Lachenal G, Halkerston KM, Rudarakanchana N, Hall J, Morrison CD, Howes SR, Robbins TW, Everitt BJ. Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and the central nucleus of the amygdala on autoshaping performance in rats. Behav Neurosci. 2002;116:533–67.

    Article  Google Scholar 

  62. Hall J, Parkinson JA, Connor TM, Dickinson A, Everitt BJ. Involvement of the central nucleus of the amygdala and nucleus accumbens core in mediating Pavlovian influences on instrumental behavior. Eur J Neurosci. 2001;13:1984–92.

    Article  PubMed  Google Scholar 

  63. Acheson A, Farrar AM, Patak M, Hausknecht KA, Kieres AK., Choi S, de Wit H, Richards JB. Nucleus accumbens lesions decrease sensitivity to rapid changes in the delay to reinforcement. Behav Brain Res. 2006;173:217–28.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Winstanley CA, Theobald DEH, Cardinal RN, Robbins TW. Contrasting roles for basolateral amygdala and orbitofrontal cortex in impulsive choice. J Neurosci. 2004;24:4718–22.

    Article  PubMed  Google Scholar 

  65. Koob GF, Ahmed SH, Boutrel B, Chen SA, Kenny PJ, Markou A, O’Dell LE, Parsons LH, Sanna PP. Neurobiological mechanisms in the transition from drug use to drug dependence. Neurosci Biobehav Rev. 2004;27:739–49.

    Article  PubMed  Google Scholar 

  66. Solomon RI, Corbit JD. An opponent-process theory of motivation: I. Temporal dynamics of affect. Psychol Rev. 1974;81(2):119–45.

    Article  PubMed  Google Scholar 

  67. O’Brien CP. A range of research-based pharmacotherapies for addiction. Science. 1997;278(5335):66–70.

    Article  PubMed  Google Scholar 

  68. Winstanley CA, Olaussen P, Taylor JR, Jentsch JD. Insight into the relationship between impulsivity and substance abuse from studies using animal models. Alcohol: Clin Exp Res. 2010;34:1–13.

    Article  Google Scholar 

  69. Grimm JW, Hope BT, Wise RA, Shaham Y. Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature. 2001;412:141–2.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Shaham Y, Shalev U, Lu L, de Wit H, Stewart J. The reinstatement model of drug relapse: history, methodology, and major findings. Psychopharmacology (Berl). 2003;168(1–2):3–20.

    Article  Google Scholar 

  71. McFarland K, Davidge SB, Lapish CC, Kalivas PW. Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J Neurosci. 2004;24(7):
1551–60.

    Article  PubMed  Google Scholar 

  72. Grimm J, See R. Dissociation of primary and secondary reward relevant limbic nuclei in an animal model of relapse. Neuropsychopharmacology. 2000;22:473–9.

    Article  PubMed  Google Scholar 

  73. Meil WM, See RE. Lesions of the basolateral amygdala abolish the ability of drug associated cues to reinstate responding during withdrawal from self-administered cocaine. Behav Brain Res. 1997;87(2):139–48.

    Article  PubMed  Google Scholar 

  74. Bava S, Tapert SF. Adolescent brain development and the risk for alcohol and other drug problems. Neuropsychol Rev. 2010;20:398–413.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Geidd JN. The teen brain: insights from neuroimaging. J Adolescent Health. 2008;42(4):
335–43.

    Article  Google Scholar 

  76. Spear LP. The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev. 2000;24:417–63.

    Article  PubMed  Google Scholar 

  77. Schell TL, Orlando M, Morral AR. Dynamic effects among patients’ treatment needs, beliefs, and utilization: a prospective study of adolescents in drug treatment. Health Serv Res. 2005;40(4):1128–47.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Cyders MA, Smith GT. Emotion-based dispositions to rash action: positive and negative urgency. Psychol Bull. 2008;134(6):807–28.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Dickman SK. Functional and dysfunctional impulsivity: personality and cognitive correlates. J Pers Soc Psychol. 1990;58:95–102.

    Article  PubMed  Google Scholar 

  80. Gould E, Woolf NJ, Butcher LL. Postnatal development of cholinergic neurons in the rat: I. Forebrain. Brain Res Bull. 1991; 27:767–789.

    Google Scholar 

  81. Kostovic I. Structural and histochemical reorganization of the human prefrontal cortex during perinatal and postnatal life. Prog Brain Res. 1990;85:223–39.

    Article  PubMed  Google Scholar 

  82. Woo TU, Pucak ML, Kye CH, Matus CV, Lewis DA. Peripubital refinement of the intrinsic and associational circuitry in monkey prefrontal cortex. Neuroscience. 1998;80(4):1149–58.

    Article  Google Scholar 

  83. Brenhouse HC, Sonntag KC, Andersen SL. Transient D1 dopamine receptor expression on prefrontal cortex projection neurons: relationship to enhanced motivational salience of drug cues in adolescence. J Neurosci. 2008;28:2375–82.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Brenhouse HC, Dumais K, Andersen SL. Enhancing the salience of dullness: behavioral and pharmacological strategies to facilitate extinction of drug-cue associations in adolescent rats. Neuroscience. 2010;169(2):628–36.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Goldstein RA, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry. 2002;159:
1642–52.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Cressman VL, Balaban J, Steinfeld S, Shemyakin A, Graham P, Parisot N, Moore H. Prefrontal cortical inputs to the basal amygdala undergo pruning during late adolescence in the rat. J Comp Neurol. 2010;518(14):2693–709.

    PubMed Central  PubMed  Google Scholar 

  87. Doremus-Fitzwater TL, Varlinksaya EI, Spear LP. Motivational systems in adolescence: possible implications for age differences in substance abuse and other risk-taking behaviors. Brain Cogn. 2010;72:114–23.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Li C, Frantz KJ. Attenuated incubation of cocaine seeking in male rats trained to self-administer cocaine during periadolescence. Psychopharmacology (Berl). 2009;204(4):725–33.

    Article  Google Scholar 

  89. Anker JJ, Carroll ME. Reinstatement of cocaine seeking induced by drugs, cues, and stress in adolescent and adult rats. Psychopharmacology (Berl). 2010;208(2):211–22.

    Article  Google Scholar 

  90. Arnett J. Reckless behavior in adolescence: a developmental perspective. Dev Rev. 1992;12:339–73.

    Article  Google Scholar 

  91. Gardner M, Steinberg L. Peer influence on risk taking, risk preference, and risky decision making in adolescence and adulthood: an experimental study. Dev Psychol. 2005;41(4):
623–35.

    Article  Google Scholar 

  92. Gipson CD, Yates J, Beckmann JS, Marusich JA, Bardo MT. Social facilitation of d-amphetamine self-administration in rats. (in review).

    Google Scholar 

  93. Douglas LA, Varlinskaya EI, Spear LP. Rewarding properties of social interactions in adolescent and adult male and female rats: impact of social versus isolate housing of subjects and partners. Dev Psychobiol. 2004;45:153–162.

    Google Scholar 

  94. Varlinskaya E, Spear LP. Changes in sensitivity to ethanol-induced social facilitation and social inhibition from early to late adolescence. Ann N Y Acad Sci. 2006;1021(1):459–61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassandra D. Gipson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gipson, C., Kalivas, P. (2016). Neural Basis of Drug Addiction. In: De Micheli, D., Andrade, A., da Silva, E., de Souza Formigoni, M. (eds) Drug Abuse in Adolescence. Springer, Cham. https://doi.org/10.1007/978-3-319-17795-3_4

Download citation

Publish with us

Policies and ethics