Skip to main content

Exchange of Pollutants Between Rivers and the Surrounding Environment: Physical Processes, Modelling Approaches and Experimental Methods

  • Chapter
  • First Online:
Book cover Rivers – Physical, Fluvial and Environmental Processes

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

  • 2524 Accesses

Abstract

The fate of solute and pollutants is controlled by a broad number of different transport and storage mechanisms, ranging from simple processes (i.e. molecular diffusion, advection etc.) to more complex phenomena (i.e. evapotranspiration, groundwater flows, etc.). Different mathematical models, accounting for different exchange processes, have been developed and applied to specific experimental studies to assess transport and storage parameters. Experimental research focused on transport and retention processes induced by the transient storage in the dead zones, by the river bed topography and vegetation, by evapotranspiration. The analysis of these physical processes is generally conducted observing the behavior of solutes in field environments or in scaled laboratory models, using artificial or environmental tracers to track the fate of transported substances and assess transport and retention parameters. To improve the knowledge of pollutant exchange mechanism between a river and the surrounding environment, new experimental techniques focusing on long timescale retention and investigating the link between river biology and hydrodynamics are required. The development of new protocols for tracer tests design and the use of new specific tracers will open future research perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson MP (2005) Heat as a groundwater tracer—review paper. Ground Water 43(6):951–968

    Article  Google Scholar 

  • Atkinson TC, Davis PM (2000) Longitudinal dispersion in natural channels: l. Experimental results from the River Severn, U.K. Hydrol Earth Syst Sci 4:345–353. doi:10.5194/hess-4-345-2000

    Article  Google Scholar 

  • Battin TJ, Kaplan LA, Denis Newbold J, Hansen CME (2003) Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426(6965):439–442. doi:10.1038/nature02152

    Article  Google Scholar 

  • Becker MW, Georgian T, Ambrose H, Siniscalchi J, Frederick K (2004) Estimating flow and flux of groundwater discharge using temperature and velocity. J Hydrol 296:221–233

    Article  Google Scholar 

  • Bencala KE (1984) Interactions of solutes and streambed sediment. II. A dynamic analysis of coupled hydrologic and chemical processes that determine solute transport. Water Resour Res 20(12):1804–1814

    Article  Google Scholar 

  • Bencala KE, Walters RA (1983) Simulation of solute transport in a mountain pool-and-riffle stream: a transient storage model. Water Resour Res 19(3):718–724

    Article  Google Scholar 

  • Bencala KE, Rathbun RE, Jackman AP, Kennedy VC, Zellweger GW, Avanzino RJ (1983) Rhodamine WT dye losses in a mountain stream environment. Water Resour Bull 19(6):943

    Article  Google Scholar 

  • Berkowitz B, Scher H (1995) On characterization of anomalous dispersion in porous and fractured media. Water Resour Res 31(6):1461–1466

    Google Scholar 

  • Boano F, Packman AI, Cortis A, Revelli R, Ridolfi L (2007) A continuous time random walk approach to the stream transport of solutes. Water Resour Res 43(W10):425

    Google Scholar 

  • Boano F, Harvey JW, Marion A, Packman Al, Revelli R, Ridolfi L, Worman A (2014) Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications, Review of Geophysics (in press)

    Google Scholar 

  • Bottacin-Busolin A, Marion A (2010) Combined role of advective pumping and mechanical dispersion on time scales of bed form–induced hyporheic exchange. Water Resour Res 46(8):W08518. doi:10.1029/2009WR008892

    Article  Google Scholar 

  • Bottacin-Busolin A, Singer G, Zaramella M, Battin TJ, Marion A (2009) Effects of streambed morphology and biofilm growth on the transient storage of solutes. Environ Sci Technol 43(19):7337–7342. doi:10.1021/es900852w

    Article  Google Scholar 

  • Bottacin-Busolin A, Marion A, Musner T, Tregnaghi M, Zaramella M (2011) Evidence of distinct contaminant transport patterns in rivers using tracer tests and a multiple domain retention model. Adv Water Resour 34(6):737–746. doi:10.1016/j.advwatres.2011.03.005

    Article  Google Scholar 

  • Briggs MA, Gooseff MN, Arp CD, Baker MA (2009) A method for estimating surface transient storage parameters for streams with concurrent hyporheic storage. Water Resour Res 45(4):W00D27. doi:10.1029/2008WR006959

  • Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37:1–33

    Article  Google Scholar 

  • Busenberg E, Plummer LN (1992) Use of chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: the alluvium and terrace system of central Oklahoma. Water Resour Res 28:2257–2284

    Article  Google Scholar 

  • Cardenas MB, Wilson JL, Zlotnik VA (2004) Impact of heterogeneity, bed forms, and stream curvature on sub-channel hyporheic exchange. Water Resour Res 40

    Google Scholar 

  • Carrera J, Sanchez-Vila X, Benet I, Medina A, Galarza G, Guimer J (1998) On matrix diffusion: formulations, solution methods and qualitative effects. Hydrogeol J 6(1):178–190

    Article  Google Scholar 

  • Castro NM, Hornberger GM (1991) Surface-subsurface interactions in an alluviated mountain stream channel. Water Resour Res 27(7):1613–1621

    Article  Google Scholar 

  • Cecil DL, Green JR (2000) Radon-222. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Chaves AS (1998) A fractional diffusion equation to describe Lévy flights. Phys Lett A 239(1–2):13–16

    Article  Google Scholar 

  • Cheong TS, Seo IW (2003) Parameter estimation of the transient storage model by a routing method for river mixing processes. Water Resour Res Am Geophys Union 39(4):HWC 1-1-1-11

    Google Scholar 

  • Choi J, Hulseapple SM, Conklin MH, Harvey JW (1999) Modeling CO2 degassing and pH in a stream-aquifer system. J Hydrol 209(1–4):297–310

    Google Scholar 

  • Comans RNJ, Hockley DE (1992) Kinetics of caesium sorption in illite. Geochim Cosmochim Acta 56:1157–1164

    Article  Google Scholar 

  • Comans RNJ, Haller M, De Preter P (1991) Sorption of caesium on illite: nonequilibrium behaviour and reversibility. Geochim Cosmochim Acta 55:433–440

    Article  Google Scholar 

  • Conant BJ (2004) Delineating and quantifying ground water discharge zones using streambed temperature. Ground Water 42(2):243–257

    Article  Google Scholar 

  • Constantz J (1998) Interaction between stream temperature, streamflow and groundwater exchanges in alpine streams. Water Resour Res 34(7):1609–1615

    Article  Google Scholar 

  • Crenshaw CL, Dahm CN, Sheibley RW, Grimm NB, Pershall AD (2005) Nitrogen dynamics in hyporheic zone sediments using 15N–NO3 tracers. ASLO Aquatic Sci Meet. Abstract

    Google Scholar 

  • Czernuszenko W, Rowinski PM (1997) Properties of the dead zone model of longitudinal dispersion in rivers. J Hydraul Res 35(4):491–504

    Article  Google Scholar 

  • Davis PM, Atkinson TC (2000) Longitudinal dispersion in natural channels: 3. An aggregated dead zone model applied to the River Severn, U.K. Hydrol Earth Syst Sci 4:373–381. doi:10.5194/hess-4-373-2000

    Article  Google Scholar 

  • Davis PM, Atkinson TC, Wigley TML (2000) Longitudinal dispersion in natural channels: 2. The roles of shear flow dispersion and dead zones in the River Severn, U.K. Hydrol Earth Syst Sci 4:355–371. doi:10.5194/hess-4-355-2000

    Article  Google Scholar 

  • De Smedt F (2006) Analytical solutions for transport of decaying solutes in rivers with transient storage. J Hydrol 330(3–4):672–680

    Article  Google Scholar 

  • De Smedt F, Wierenga PJ (2005) Analytical solution for solute transport resulting from instantaneous injection in streams with transient storage. J Hydrol 315(1–4):25–39

    Article  Google Scholar 

  • Deng Z-Q, Singh VP, Bengtsson L (2004) Numerical solution of fractional advection-dispersion equation. J Hydraul Eng 130(5):422–431

    Article  Google Scholar 

  • Deng Z-Q, Bengtsson L, Singh VP (2006) Parameter estimation for fractional dispersion model for rivers. Environ Fluid Mech 6(5):451–475

    Article  Google Scholar 

  • Duff JH, Triska FJ (1990) Denitrification in sediments from the hyporheic zone adjacent to a small forested stream. Can J Fish Aquat Sci 47:1140–1147

    Article  Google Scholar 

  • Duke JR, White JD, Allen PM, Muttiah RS (2007) Riparian influence on hyporheic-zone formation downstream of a small dam in the Blackland Prairie region of Texas. Hydrol Process 21(2):141–150

    Article  Google Scholar 

  • Ellins KK, Roman-Mas A, Lee R (1990) Using 222Rn to examine groundwater/surface discharge interaction in the Rio Grande De Manati, Puerto Rico. J Hydrol 115:319–341

    Article  Google Scholar 

  • Elliott AH, Brooks NH (1997a) Transfer of non-sorbing solutes to a streambed with bed forms: theory. Water Resour Res 33:123–136

    Article  Google Scholar 

  • Elliott AH, Brooks NH (1997b) Transfer of non-sorbing solutes to a streambed with bed forms: laboratory experiments. Water Resour Res 33:137–151

    Article  Google Scholar 

  • Fernald AG, Wigington PJ, Landers DH (2001) Transient storage and hyporheic flow along the Willamette River, Oregon: Field measurements and model estimates. Water Resour Res 37(6):1681–1694

    Article  Google Scholar 

  • Fick A (1855) Über diffusion. Annalen der Physik 170:59

    Google Scholar 

  • Fischer HB (1975) Discussion of “Simple method for predicting dispersion in streams”. J Env Eng Div ASCE 101(3):435–455

    Google Scholar 

  • Fischer HB, List JE, Koh CR, Imberger J, Brooks NH (1979) Mixing in inland and coastal waters. Academic, London

    Google Scholar 

  • Franken RJM, Storey RG, Williams DD (2001) Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a northtemperate stream. Hydrobiologia 444:183–195

    Article  Google Scholar 

  • Fuller CC, Harvey JW (2000) Reactive uptake of trace metals in the hyporheic zone of a mining contaminated stream, Pinal Creek, Arizona. Environ Sci Technol 34:1150–1155

    Article  Google Scholar 

  • González-Pinzón R, Haggerty R (2013) An efficient method to estimate processing rates in streams. Water Resour Res 49(9):6096–6099. doi:10.1002/wrcr.20446

    Article  Google Scholar 

  • Gooseff MN, Briggs MA, Bencala KE, McGlynn BL, Scott DT (2013) Do transient storage parameters directly scale in longer, combined stream reaches? Reach length dependence of transient storage interpretations. J Hydrol 483:16–25. doi:10.1016/j.jhydrol.2012.12.046

    Article  Google Scholar 

  • Haggerty R, Gorelick SM (1995) Multiple-Rate mass transfer for modeling diffusion and surface reactions in media with Pore-Scale heterogeneity. Water Resour Res 31(10):2383–2400

    Article  Google Scholar 

  • Haggerty R, McKenna SA, Meigs LC (2000) On the late-time behavior of tracer test breakthrough curves. Water Resour Res 36(12):3467–3479

    Article  Google Scholar 

  • Haggerty R, Marti E, Argerich A, von Schiller D, Grimm NB (2009) Resazurin as a ‘‘smart’’ tracer for quantifying metabolically active transient storage in stream ecosystems. J Geophys Res 114:G03014. doi:10.1029/2008JG000942

    Google Scholar 

  • Harvey JW, Bencala KE (1993) The effect of streambed topography on surface–subsurface water exchange in mountain catchments. Water Resour Res 29:88–99

    Google Scholar 

  • Harvey JW, Fuller CC (1998) Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance. Water Resour Res 34(4):623–636

    Article  Google Scholar 

  • Harvey JW, Wagner BJ, Bencala KE (1996) Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange. Water Resour Res 32(8):2441–2451

    Article  Google Scholar 

  • Harvey JW, Newlin JT, Saiers JE (2005) Solute transport and storage mechanisms in wetlands of the Everglades, South Florida. Water Resour Res 41:W05009. doi:10.01029/02004WR003507

    Article  Google Scholar 

  • Hays JR, Krenkel PA, Schnelle KBJ (1966) Mass transport mechanism in open channel flow. Tech Rep 8, Vanderbilt University, Nashville, Tennessee

    Google Scholar 

  • Hendricks SP, White DS (1991) Physiochemical patterns within a hyporheic zone of a northern Michigan River, with comments on surface water patterns.Canadian. J Fish Aquat Sci 48:1645–1654

    Article  Google Scholar 

  • Jackman A, Walters R, Kennedy V (1984) Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, USA: 2. Mathematical modeling. J Hydrol 75(1–4):111–141

    Article  Google Scholar 

  • Johansson H, Jonsson K, Forsman KJ, Wörman A (2001) Retention of conservative and sorptive solutes in streams—simultaneous tracer experiment. Sci Total Environ 266:229–238

    Article  Google Scholar 

  • Jones KL, Poole GC, Woessner WW, Vitale MV, Boer BR, O’Daniel SJ, Thomas SA, Geffen BA (2008) Geomorphology, hydrology, and aquatic vegetation drive seasonal hyporheic flow patterns across a gravel-dominated floodplain. Hydrol Process 22:2105–2113

    Article  Google Scholar 

  • Jonsson K, Wörman A (2001) Effect of sorption kinetics on the transport of solutes in streams. Sci Total Environ 266:239–247

    Article  Google Scholar 

  • Jonsson K, Johansson H, Wörman A (2003) Hyporheic exchange of reactive and conservative solutes in streams—tracer methodology and model interpretation. J Hydrol 278:152–171

    Google Scholar 

  • Karakashev D, Galabova D, Simeonov I (2003) A simple and rapid test for differentiation of aerobic from anaerobic bacteria. World J Microbiol Biotechnol 19:233–238. doi:10.1023/A:1023674315047

    Article  Google Scholar 

  • Larsen LG, Harvey JW, Maglio MM (2014) Dynamic hyporheic exchange at intermediate timescales: testing the relative importance of evapotranspiration and flood pulses. Water Resour Res 50:318–335. doi:10.1002/2013WR014195

    Article  Google Scholar 

  • Lautz LK, Kranes NT, Siegel DI (2010) Heat tracing of heterogeneous hyporheic exchange adjacent to in-stream geomorphic features. Hydrol Process 24(21):3074–3086. doi:10.1002/hyp.7723

    Article  Google Scholar 

  • Lees MJ, Camacho LA, Chapra SC (2000) On the relationship of transient storage and aggregated dead zone models of longitudinal solute transport in streams. Water Resour Res 36(1):213–224

    Article  Google Scholar 

  • Loheide SP II (2008) A method for estimating subdaily evapotranspiration of shallow groundwater using diurnal water table fluctuations. Ecohydrology 1(1):59–66

    Article  Google Scholar 

  • Marion A, Bellinello M, Guymer I, Packman A (2002) Effect of bed form geometry on the penetration of nonreactive solutes into a streambed. Water Resour Res 38(10):27–1.

    Google Scholar 

  • Marion A, Packman AI, Zaramella M, Bottacin-Busolin A (2008a) Hyporheic flows in stratified beds. Water Resour Res 44(9):W09433. doi:10.1029/2007WR006079

    Article  Google Scholar 

  • Marion A, Zaramella M, Bottacin-Busolin A (2008b) Solute transport in rivers with multiple storage zones: the STIR model. Water Resour Res 44(10):W10406. doi:10.1029/2008WR007037

    Article  Google Scholar 

  • Mulholland PJ, Marzolf ER, Webster JR, Hart DR, Hendricks SP (1997) Evidence that hyporheic zones increase hetrotrophic metabolism and phosphorus uptake in forest streams, Limnol. Oceanogr 42:443–451.

    Google Scholar 

  • Neilson BT, Chapra SC, Stevens DK, Bandaragoda C (2010a) Two-zone transient storage modeling using temperature and solute data with multiobjective calibration: 1. Temperature. Water Resour Res 46(12):W12520. doi:10.1029/2009WR008756

    Google Scholar 

  • Neilson BT, Stevens DK, Chapra SC, Bandaragoda C (2010b) Two-zone transient storage modeling using temperature and solute data with multiobjective calibration: 2. Temperature and solute. Water Resour Res 46(12):W12521. doi:10.1029/2009WR008759

    Google Scholar 

  • Nepf HM (1999) Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour Res 35(2):479–489. doi:10.1029/1998WR900069

    Article  Google Scholar 

  • Nepf H, Ghisalberti M, White B, Murphy E (2007) Retention time and dispersion associated with submerged aquatic canopies. Water Resour Res 43(4):W04422. doi:10.1029/2006WR005362

    Article  Google Scholar 

  • Nordin CF, Troutman BM (1980) Longitudinal dispersion in rivers: the persistence of skewness in observed data. Water Resour Res 16:123–128

    Google Scholar 

  • Nyffeler UP, Li YH, Santschi PH (1984) A kinetic approach to describe traceelement distribution between particles and solution in natural aquatic systems. Geochim Cosmochim Acta 48:1513–1522

    Article  Google Scholar 

  • Packman AI, Salehin M (2003) Relative roles of stream flow and sedimentary conditions in controlling hyporheic exchange. Hydrobiologia 494:291–297

    Article  Google Scholar 

  • Packman AI, Salehin M, Zaramella M (2004) Hyporheic exchange with gravel beds: basic hydrodynamic interactions and bedform-induced advective flows. J Hydraul Eng 130(7):647–656

    Article  Google Scholar 

  • Plummer NL, Busenberg E (2000) Choloroflurocarbon. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Rau GC, Andersen MS, McCallum AM, Roshan H, Acworth RI (2014) Heat as a tracer to quantify water flow in near-surface sediments. Earth Sci Rev 129:40–58. doi:10.1016/j.earscirev.2013.10.015

    Article  Google Scholar 

  • Runkel RL (1998) One-dimensional transport with Inflow and Storage (OTIS): A solute transport model of streams and rivers, US Geol. Surv. Water Resour. Invest. Rep., pp 98–4018

    Google Scholar 

  • Runkel RL, Chapra SC (1993) An efficient numerical solution of the transient storage equations for solute transport in small streams. Water Resour Res 29(1):211–215

    Article  Google Scholar 

  • Salehin M, Packman AI, Wörman A (2003) Comparison of transient storage in vegetated and unvegetated reaches of a small agricultural stream in Sweden: seasonal variation and anthropogenic manipulation. Adv Water Res 26:951–964

    Google Scholar 

  • Savant SA, Reible DD, Thibodeaux LJ (1987) Convective transport within stable river sediments. Water Resour Res 23(9):763–1768.

    Google Scholar 

  • Scher H, Margolin G, Berkowitz B (2002) Towards a unified framework for anomalous transport in heterogeneous media. Chem Phys 284(1–2):349–359

    Article  Google Scholar 

  • Schumer R, Benson DA, Meerschaert MM, Wheatcraft SW (2001) Eulerian derivation of the fractional advection-dispersion equation. J Contaminant Hydrol 48(1):69–88

    Article  Google Scholar 

  • Shucksmith JD, Boxall JB, Guymer I (2011) Determining longitudinal dispersion coefficients for submerged vegetated flow. Water Resour Res 47(10): n/a–n/a. doi:10.1029/2011WR010547

  • Smith JT, Comans RNJ (1996) Modelling the diffuse transport and remobilisation of 137 Cs in sediments: the effects of sorption kinetics and reversibility. Geochim Cosmochim Acta 60:995–1004

    Article  Google Scholar 

  • Storey RG, Howard KWF, Williams DD (2003) Factors controlling riffle-scale hyporheic exchange flows and their seasonal changes in a gaining stream: a threedimensional groundwater flow model. Water Res Res 39(2):Art. No. 1034

    Google Scholar 

  • Thibodeaux LJ, Boyle JD (1987) Bedform-generated convective transport in bottom sediment. Nature 325:341–343

    Article  Google Scholar 

  • Triska FJ, Kennedy VC, Avanzino RJ, Wellweger GW, Bencala KE (1989a) Retention and transport of nutrients in a third-order stream: channel processes. Ecology 70:1877–1892

    Article  Google Scholar 

  • Triska FJ, Kennedy VC, Avanzino RJ, Wellweger GW, Bencala KE (1989b) Retention and transport of nutrients in a third-order stream in Northwestern California: hyporheic processes. Ecology 70:1893–1905

    Article  Google Scholar 

  • Triska FJ, Duff JH, Avanzino RJ (1990) Influence of exchange flow between the channel and hyporheic zone on nitrate production in a small mountain stream. Can J Fish Aquat Sci 47:2099–2111

    Article  Google Scholar 

  • Triska FJ, Duff JH, Avanzino RJ (1993) Patterns of hydrological exchange and nutrient transformation in the hyporheic zone of a gravel bottom stream: examining terrestrial–aquatic linkages. Freshw Biol 29:259–274

    Article  Google Scholar 

  • Vallet HM, Morice JA, Dahm CN, Campana ME (1996) Parent lithology, surface-groundwater exchange, and nitrate retention in headwater streams. Limnol Oceanogr 41(2):333–345

    Article  Google Scholar 

  • van Genuchten MT, Wierenga PJ (1976) Mass transfer studies in Sorbing porous media I. Analytical solutions. Soil Sci Soc Am J 40(4):473–480

    Google Scholar 

  • Wagner BJ, Harvey JW (1997) Experimental design for estimating parameters of rate-limited mass transfer: analysis of stream tracer studies. Water Resour Res 33(7):1731–1741. doi:10.1029/97WR01067

    Article  Google Scholar 

  • Ward RS, Williams AT, Barker JA, Brewerton LJ, Gale IN (1998) Groundwater tracer tests: a review and guidelines for their use in British aquifers. Environment Agency R&D Technical Report W160

    Google Scholar 

  • Wilson JF, Cobb ED, Kilpatrick FA (1986) Fluorometric procedures for dye tracing. techniques of water-resources investigations of the United States Geological Survey, Chaper A12

    Google Scholar 

  • Wörman A, Packman AI, Johansson H, Jonsson K (2002) Effect of flow-induced exchange in hyporheic zones on longitudinal transport of solutes in streams and rivers. Water Resour Res 38:1001

    Google Scholar 

  • Wörman A, Riml J, Schmadel N, Neilson BT, Bottacin-Busolin A, Heavilin JE (2012) Spectral scaling of heat fluxes in streambed sediments. Geophys Res Lett 39(23):L23402. doi:10.1029/2012GL053922

    Article  Google Scholar 

  • Yoneda M, Inoue Y, Takine N (1991) Location of groundwater seepage points into a river by measurement of radon-222 concentration in water using activated charcoal passive collectors. J Hydrol 124(3–4):307–316

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Executive Agency, through the 7th Framework Programme of the European Union, Support for Training and Career Development of Researchers (Marie Curie—FP7-PEOPLE-2012-ITN), which funded the Initial Training Network (ITN) HYTECH ‘Hydrodynamic Transport in Ecologically Critical Heterogeneous Interfaces’, N.316546.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zaramella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zaramella, M., Bottacin-Busolin, A., Tregnaghi, M., Marion, A. (2015). Exchange of Pollutants Between Rivers and the Surrounding Environment: Physical Processes, Modelling Approaches and Experimental Methods. In: Rowiński, P., Radecki-Pawlik, A. (eds) Rivers – Physical, Fluvial and Environmental Processes. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-17719-9_23

Download citation

Publish with us

Policies and ethics