Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 848 Accesses

Abstract

This chapter starts with a brief introduction of broadband multi-carrier transmission in Sect. 3.1. Section 3.2 describes the amplitude properties of multi-carrier signals, especially their large peak-to-average ratio. A discussion of the ADC dynamic range requirement for a multi-carrier system is given in Sect. 3.3. Section 3.4 reviews power reduction techniques to enhance the SNR of noise limited ADCs in advanced CMOS technologies. Section 3.5 presents a parallel-sampling architecture for ADCs to convert multi-carrier signals efficiently by exploiting their amplitude statistical properties. ADCs with this architecture are able to have a larger input signal range without causing excessive distortion while showing an improved accuracy over the small amplitudes that have much higher probability of occurrence due to the multi-carrier signal amplitude properties. The power consumption and area of ADCs with the parallel-sampling architecture can be reduced to achieve a desired SNR for multi-carrier signals compared to conventional ADCs. Section 3.6 proposes four implementation options of the parallel-sampling ADC architecture and Sect. 3.7 concludes the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ISSCC 2013: Trends. 2014. [Online]. http://www.isscc.org/doc/2013/2013_Trends.pdf. Accessed 09 Jun 2014.

  2. Shannon, C.E. 1998. Communication in the presence of noise. Proceedings of the IEEE 86(2): 447–457.

    Article  Google Scholar 

  3. Pierce, J.R. 1980. An introduction to information theory: Symbols, signals and noise, Subsequent ed. Mineola, NY: Dover Publications.

    MATH  Google Scholar 

  4. Bingham, J.A.C. 1990. Multicarrier modulation for data transmission: An idea whose time has come. IEEE Communications Magazine 28(5): 5–14.

    Article  MathSciNet  Google Scholar 

  5. Pun, M., M. Morelli, and C.C.J. Kuo. 2007. Multi-carrier techniques for broadband wireless communications: A signal processing perspectives. London: Singapore; Hackensack, NJ: Imperial College Press.

    Google Scholar 

  6. El-Absi, M., and M. Banat. 2011. Peak-to-average power ratio reduction in OFDM systems: Toward more efficient and reliable wireless systems. Germany: LAP LAMBERT Academic Publishing.

    Google Scholar 

  7. IEEE Standard for Information Technology: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. 2013. IEEE Std 802.11ac-2013, 1–425.

    Google Scholar 

  8. DOCSIS 3.0 Physical Layer Interface Specification. 2014. [Online]. http://www.cablelabs.com/specification/docsis-3-0-physical-layer-interface-specification/. Accessed 09 Jun 2014.

  9. Gustavsson, M., J.J. Wikner, and N. Tan. 2000. CMOS data converters for communications, 2000th ed. Boston: Springer.

    Google Scholar 

  10. Feller, W. 1945. The fundamental limit theorems in probability. Bulletin of the American Mathematical Society 51(11): 800–832.

    Article  MATH  MathSciNet  Google Scholar 

  11. Clipping in Multi-Carrier Systems. 2004. Multi-carrier digital communications, 69–98. US: Springer.

    Google Scholar 

  12. Chiu, Y., B. Nikolic, and P.R. Gray. 2005. Scaling of analog-to-digital converters into ultra-deep-submicron CMOS. In Custom Integrated Circuits Conference, 2005. Proceedings of the IEEE 2005, 375–382.

    Google Scholar 

  13. Bult, K. 2000. Analog design in deep sub-micron CMOS. In Solid-State Circuits Conference, 2000. ESSCIRC ’00. Proceedings of the 26rd European, 126–132.

    Google Scholar 

  14. Annema, A.-J., B. Nauta, R. van Langevelde, and H. Tuinhout. 2005. Analog circuits in ultra-deep-submicron CMOS. IEEE Journal of Solid-State Circuits 40(1): 132–143.

    Article  Google Scholar 

  15. Murmann, B. 2010. Trends in low-power, digitally assisted A/D conversion. IEICE Transactions on Electronics E93-C(6): 718–729.

    Google Scholar 

  16. Razavi, B. 2000. Design of analog CMOS integrated circuits. New Delhi: McGraw-Hill Education.

    Google Scholar 

  17. Sansen, W. 2012. Power minimization in ADC design. In Analog circuit design, ed. M. Steyaert, A. van Roermund, and A. Baschirotto, 3–18. The Netherlands: Springer.

    Chapter  Google Scholar 

  18. Murmann, B. 2012. Low-power pipelined A/D conversion. In Analog circuit design, ed. M. Steyaert, A. van Roermund, and A. Baschirotto, 19–38. The Netherlands: Springer.

    Chapter  Google Scholar 

  19. Horowitz, M., E. Alon, D. Patil, S. Naffziger, R. Kumar, and K. Bernstein. 2005. Scaling, power, and the future of CMOS. In Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, 7–15.

    Google Scholar 

  20. Taiwan Semiconductor Manufacturing Company Limited. 2014. [Online]. http://www.tsmc.com/english/dedicatedFoundry/technology/28nm.htm. Accessed 14 Jun 2014.

  21. Abo, A.M., and P.R. Gray. 1999. A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE Journal of Solid-State Circuits 34(5): 599–606.

    Article  Google Scholar 

  22. Stroeble, O., V. Dias, and C. Schwoerer. 2004. An 80 MHz 10 b pipeline ADC with dynamic range doubling and dynamic reference selection. In Solid-State Circuits Conference, 2004. Digest of Technical Papers. ISSCC. 2004 IEEE International, 462–539, Vol. 1.

    Google Scholar 

  23. Van de Vel, H., B.A.J. Buter, H. Van Der Ploeg, M. Vertregt, G.J.G.M. Geelen, and E.J.F. Paulus. 2009. A 1.2-V 250-mW 14-b 100-MS/s digitally calibrated pipeline ADC in 90-nm CMOS. IEEE Journal of Solid-State Circuits 44(4): 1047–1056.

    Article  Google Scholar 

  24. Mak, P.-I., and R.P. Martins. 2010. High-/mixed-voltage rf and analog CMOS circuits come of age. IEEE Circuits and Systems Magazine 10(4): 27–39 (Fourthquarter).

    Google Scholar 

  25. Choi, H.-C., J.-W. Kim, S.-M. Yoo, K.-J. Lee, T.-H. Oh, M.-J. Seo, and J.-W. Kim. 2006. A 15 mW 0.2 mm/sup 2/ 50 MS/s ADC with wide input range. In Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE International, 842–851.

    Google Scholar 

  26. Wu, J., A. Chou, C.-H. Yang, Y. Ding, Y.-J. Ko, S.-T. Lin, W. Liu, C.-M. Hsiao, M.-H. Hsieh, C.-C. Huang, J.-J. Hung, K. Y. Kim, M. Le, T. Li, W.-T. Shih, A. Shrivastava, Y.-C. Yang, C.-Y. Chen, and H.-S. Huang. 2013. A 5.4 GS/s 12 b 500 mW pipeline ADC in 28 nm CMOS. In 2013 Symposium on VLSI Circuits (VLSIC), C92–C93.

    Google Scholar 

  27. Janssen, E., K. Doris, A. Zanikopoulos, A. Murroni, G. van der Weide, Y. Lin, L. Alvado, F. Darthenay, and Y. Fregeais. 2013. An 11 b 3.6 GS/s time-interleaved SAR ADC in 65 nm CMOS. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International, 464–465.

    Google Scholar 

  28. Weltin-Wu, C., and Y. Tsividis. 2013. An event-driven clockless level-crossing ADC with signal-dependent adaptive resolution. IEEE Journal of Solid-State Circuits 48(9): 2180–2190.

    Article  Google Scholar 

  29. Wakin, M., S. Becker, E. Nakamura, M. Grant, E. Sovero, D. Ching, J. Yoo, J. Romberg, A. Emami-Neyestanak, and E. Candes. 2012. A nonuniform sampler for wideband spectrally-sparse environments. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2(3): 516–529.

    Article  Google Scholar 

  30. Gregers-Hansen, V., S.M. Brockett, and P.E. Cahill. 2001. A stacked A-to-D converter for increased radar signal processor dynamic range. In Proceedings of the 2001 IEEE Radar Conference, 2001, 169–174.

    Google Scholar 

  31. Doris, K. 2008. Data processing device comprising adc unit. WO2008072130 A1.

    Google Scholar 

  32. Reeder, Rob, Mark Looney, and Jim Hand. 2005. Pushing the state of the art with multichannel A/D converters. Analog Dialogue 39–2: 7–10.

    Google Scholar 

  33. Lin, Y., K. Doris, H. Hegt, and A.H.M. Van Roermund. 2012. An 11 b pipeline ADC with parallel-sampling technique for converting multi-carrier signals. IEEE Transactions on Circuits and Systems I: Regular Papers 59(5): 906–914.

    Article  MathSciNet  Google Scholar 

  34. Black, W.C., and D. Hodges. 1980. Time interleaved converter arrays. IEEE Journal of Solid-State Circuits 15(6): 1022–1029.

    Google Scholar 

  35. Kurosawa, N., H. Kobayashi, K. Maruyama, H. Sugawara, and K. Kobayashi. 2001. Explicit analysis of channel mismatch effects in time-interleaved ADC systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 48(3): 261–271.

    Article  Google Scholar 

  36. El-Chammas, M., and B. Murmann. 2012. Time-interleaved ADCs. In Background calibration of time-interleaved data converters, 5–30. New York: Springer.

    Google Scholar 

  37. Razavi, B. 2013. Design considerations for interleaved ADCs. IEEE Journal of Solid-State Circuits 48(8): 1806–1817.

    Article  Google Scholar 

  38. Fu, D., K.C. Dyer, S.H. Lewis, and P.J. Hurst. 1998. A digital background calibration technique for time-interleaved analog-to-digital converters. IEEE Journal of Solid-State Circuits 33(12): 1904–1911.

    Article  Google Scholar 

  39. Doris, K., E. Janssen, C. Nani, A. Zanikopoulos, and G. Van Der Weide. 2011. A 480 mW 2.6 GS/s 10 b time-interleaved ADC with 48.5 dB SNDR up to Nyquist in 65 nm CMOS. IEEE Journal of Solid-State Circuits 46(12): 2821–2833.

    Article  Google Scholar 

  40. Dusan Stepanovic. 2012. Calibration techniques for time-interleaved SAR A/D converters. Ph.D dissertation, EECS Department, University of California, Berkeley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Lin .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lin, Y., Hegt, H., Doris, K., van Roermund, A.H.M. (2015). Parallel-Sampling ADC Architecture for Multi-carrier Signals. In: Power-Efficient High-Speed Parallel-Sampling ADCs for Broadband Multi-carrier Systems. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-17680-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17680-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17679-6

  • Online ISBN: 978-3-319-17680-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics