Skip to main content

Monitoring Spiking Activity of Many Individual Neurons in Invertebrate Ganglia

  • Chapter
Membrane Potential Imaging in the Nervous System and Heart

Abstract

Optical recording with fast voltage sensitive dyes makes it possible, in suitable preparations, to simultaneously monitor the action potentials of large numbers of individual neurons. Here we describe methods for doing this, including considerations of different dyes and imaging systems, methods for correlating the optical signals with their source neurons, procedures for getting good signals, and the use of Independent Component Analysis for spike-sorting raw optical data into single neuron traces. These combined tools represent a powerful approach for large-scale recording of neural networks with high temporal and spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alivisatos AP, Chun M et al (2013) Neuroscience: the brain activity map. Science 339:1284–1285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159

    Article  CAS  PubMed  Google Scholar 

  • Boyle MB, Cohen LB et al (1983) The number and size of neurons in the CNS of gastropod molluscs and their suitability for optical recording of activity. Brain Res 266(2):305–317

    Article  CAS  PubMed  Google Scholar 

  • Briggman KL, Abarbanel HD et al (2006) From crawling to cognition: analyzing the dynamical interactions among populations of neurons. Curr Opin Neurobiol 16(2):135–144

    Article  CAS  PubMed  Google Scholar 

  • Brown GD, Yamada S et al (2008) Independent component analysis of optical recordings from Tritonia swimming neurons, Technical Report INC-08-001, Institute for Neural Computation, University of California at San Diego

    Google Scholar 

  • Brown GD, Yamada S et al (2001) Independent component analysis at the neural cocktail party. Trends Neurosci 24(1):54–63

    Article  CAS  PubMed  Google Scholar 

  • Bruno AM, Frost WN et al (2015) Modular deconstruction reveals the dynamical and physical building blocks of a locomotion motor program. Neuron 86:304–18

    Article  CAS  PubMed  Google Scholar 

  • Carlson GC, Coulter DA (2008) In vitro functional imaging in brain slices using fast voltage-sensitive dye imaging combined with whole-cell patch recording. Nat Protoc 3(2):249–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang PY, Jackson MB (2003) Interpretation and optimization of absorbance and fluorescence signals from voltage-sensitive dyes. J Membr Biol 196(2):105–116

    Article  CAS  PubMed  Google Scholar 

  • Cohen L, Hopp HP et al (1989) Optical measurement of action potential activity in invertebrate ganglia. Annu Rev Physiol 51:527–541

    Article  CAS  PubMed  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21

    Article  PubMed  Google Scholar 

  • Ebner TJ, Chen G (1995) Use of voltage-sensitive dyes and optical recordings in the central nervous system. Prog Neurobiol 46(5):463–506

    Article  CAS  PubMed  Google Scholar 

  • Feldt S, Waddell J et al (2009) Functional clustering algorithm for the analysis of dynamic network data. Phys Rev E Stat Nonlin Soft Matter Phys 79(5 Pt 2):056104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frost WN, Wang J et al (2007) A stereo-compound hybrid microscope for combined intracellular and optical recording of invertebrate neural network activity. J Neurosci Methods 162(1–2):148–154

    Article  PubMed Central  PubMed  Google Scholar 

  • Gerstein GL, Williams ER et al (2012) Detecting synfire chains in parallel spike data. J Neurosci Methods 206(1):54–64

    Article  PubMed  Google Scholar 

  • Grinvald A, Salzberg BM et al (1977) Simultaneous recording from several neurones in an invertebrate central nervous system. Nature 268(5616):140–142

    Article  CAS  PubMed  Google Scholar 

  • Hill ES, Bruno AM et al (2014) Recent developments in VSD imaging of small neuronal networks. Learn Mem 21(10):499–505

    Article  PubMed  Google Scholar 

  • Hill ES, Bruno AM et al (2012) ICA applied to VSD imaging of invertbrate neuronal networks. In: Ganesh N (ed) Independent component analysis for audio and biosignal applications. InTech: Chapter 12, p. 235–246

    Google Scholar 

  • Hill ES, Moore-Kochlacs C et al (2010) Validation of independent component analysis for rapid spike sorting of optical recording data. J Neurophysiol 104(6):3721–3731

    Article  PubMed Central  PubMed  Google Scholar 

  • Humphries MD (2011) Spike-train communities: finding groups of similar spike trains. J Neurosci 31(6):2321–2336

    Article  CAS  PubMed  Google Scholar 

  • Jin W, Zhang RJ et al (2002) Voltage-sensitive dye imaging of population neuronal activity in cortical tissue. J Neurosci Methods 115(1):13–27

    Article  PubMed  Google Scholar 

  • Koch C (2012) Modular biological complexity. Science 337(6094):531–532

    Article  CAS  PubMed  Google Scholar 

  • Kojima S, Hosono T et al (2001) Optical detection of neuromodulatory effects of conditioned taste aversion in the pond snail Lymnaea stagnalis. J Neurobiol 49(2):118–128

    Article  CAS  PubMed  Google Scholar 

  • Kosmidis EK, Cohen LB et al (2005) Imaging with voltage-sensitive dyes: spike signals, population signals, and retrograde transport. In: Yuste R, Konnerth A (eds) Imaging in neuroscience and development: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 445–455

    Google Scholar 

  • London JA, Zecevic D et al (1987) Simultaneous optical recording of activity from many neurons during feeding in Navanax. J Neurosci 7(3):649–661

    CAS  PubMed  Google Scholar 

  • Lopes-dos-Santos V, Conde-Ocazionez S et al (2011) Neuronal assembly detection and cell membership specification by principal component analysis. PLoS One 6(6), e20996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lyttle D, Fellous JM (2011) A new similarity measure for spike trains: sensitivity to bursts and periods of inhibition. J Neurosci Methods 199(2):296–309

    Article  PubMed Central  PubMed  Google Scholar 

  • Miller EW, Lin JY et al (2012) Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires. Proc Natl Acad Sci U S A 109(6):2114–2119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Momose-Sato Y, Sato K et al (1999) Evaluation of voltage-sensitive dyes for long-term recording of neural activity in the hippocampus. J Membr Biol 172(2):145–157

    Article  CAS  PubMed  Google Scholar 

  • Nakashima M, Yamada S et al (1992) 448-Detector optical recording system: development and application to Aplysia gill-withdrawal reflex. IEEE Trans Biomed Eng 39:26–36

    Article  CAS  PubMed  Google Scholar 

  • Neunlist M, Peters S et al (1999) Multisite optical recording of excitability in the enteric nervous system. Neurogastroenterol Motil 11(5):393–402

    Article  CAS  PubMed  Google Scholar 

  • Nikitin ES, Balaban PM (2000) Optical recording of odor-evoked responses in the olfactory brain of the naive and aversively trained terrestrial snails. Learn Mem 7(6):422–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Obaid AL, Koyano T et al (1999) Spatiotemporal patterns of activity in an intact mammalian network with single-cell resolution: optical studies of nicotinic activity in an enteric plexus. J Neurosci 19(8):3073–3093

    CAS  PubMed  Google Scholar 

  • Obaid AL, Loew LM et al (2004) Novel naphthylstyryl-pyridium potentiometric dyes offer advantages for neural network analysis. J Neurosci Methods 134(2):179–190

    Article  CAS  PubMed  Google Scholar 

  • Parsons TD, Salzberg BM et al (1991) Long-term optical recording of patterns of electrical activity in ensembles of cultured Aplysia neurons. J Neurophysiol 66:316–333

    CAS  PubMed  Google Scholar 

  • Salzberg BM, Grinvald A et al (1977) Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons. J Neurophysiol 40(6):1281–1291

    CAS  PubMed  Google Scholar 

  • Schemann M, Michel K et al (2002) Cutting-edge technology. III. Imaging and the gastrointestinal tract: mapping the human enteric nervous system. Am J Physiol Gastrointest Liver Physiol 282(6):G919–G925

    Article  CAS  PubMed  Google Scholar 

  • Senseman DM (1996) High-speed optical imaging of afferent flow through rat olfactory bulb slices: voltage-sensitive dye signals reveal periglomerular cell activity. J Neurosci 16(1):313–324

    CAS  PubMed  Google Scholar 

  • Sinha SR, Saggau P (1999) Optical recording from populations of neurons in brain slices. In: Johanson H, Windhorst U (eds) Modern techniques in neuroscience research. p. 459–486

    Google Scholar 

  • Taylor AL, Cottrell GW et al (2003) Imaging reveals synaptic targets of a swim-terminating neuron in the leech CNS. J Neurosci 23(36):11402–11410

    CAS  PubMed  Google Scholar 

  • Traud AL, Frost C et al (2009) Visualization of communities in networks. Chaos 19(4):041104

    Article  PubMed Central  PubMed  Google Scholar 

  • Vanden Berghe P, Bisschops R et al (2001) Imaging of neuronal activity in the gut. Curr Opin Pharmacol 1(6):563–567

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Jing G et al (2009) Spectral characterization of the voltage-sensitive dye di-4-ANEPPDHQ applied to probing live primary and immortalized neurons. Opt Express 17(2):984–990

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Cohen LB et al (1994) Neuronal activity during different behaviors in Aplysia: a distributed organization. Science 263:820–823

    Article  CAS  PubMed  Google Scholar 

  • Yagodin S, Collin C et al (1999) Mapping membrane potential transients in crayfish (Procambarus clarkii) optic lobe neuropils with voltage-sensitive dyes. J Neurophysiol 81(1):334–344

    CAS  PubMed  Google Scholar 

  • Yang S, Doi T et al (2000) Multiple-site optical recording of mouse brainstem evoked by vestibulocochlear nerve stimulation. Brain Res 877(1):95–100

    Article  CAS  PubMed  Google Scholar 

  • Yuste R (2008) Circuit neuroscience: the road ahead. Front Neurosci 2(1):6–9

    Article  PubMed Central  PubMed  Google Scholar 

  • Zecevic D, Wu J et al (1989) Hundreds of neurons in the Aplysia abdominal ganglion are active during the gill-withdrawal reflex. J Neurosci 9:3681–3689

    CAS  PubMed  Google Scholar 

  • Zochowski M, Cohen LB et al (2000a) Distributed and partially separate pools of neurons are correlated with two different components of the gill-withdrawal reflex in Aplysia. J Neurosci 20(22):8485–8492

    CAS  PubMed  Google Scholar 

  • Zochowski M, Wachowiak M et al (2000b) Imaging membrane potential with voltage-sensitive dyes. Biol Bull 198(1):1–21

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by NIH NS060921, NSF 1257923, Dart Foundation and Grass Foundation Marine Biological Laboratory summer fellowships, the Fred B. Snite Foundation, Rosalind Franklin University of Medicine and Science (WF), NIH F31NS079036 (AB), MRC Senior non-Clinical Fellowship (MH) and the Howard Hughes Medical Institute (TS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. N. Frost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frost, W.N. et al. (2015). Monitoring Spiking Activity of Many Individual Neurons in Invertebrate Ganglia. In: Canepari, M., Zecevic, D., Bernus, O. (eds) Membrane Potential Imaging in the Nervous System and Heart. Advances in Experimental Medicine and Biology, vol 859. Springer, Cham. https://doi.org/10.1007/978-3-319-17641-3_5

Download citation

Publish with us

Policies and ethics