Skip to main content

Quadruplex Priming Amplification (QPA) for Nucleic Acid Diagnostics

  • Chapter
RNA and DNA Diagnostics

Part of the book series: RNA Technologies ((RNATECHN))

  • 1986 Accesses

Abstract

Due to its incredible sensitivity, polymerase chain reaction (PCR) is a method of choice for nucleic acid diagnostics. However, PCR is a complex reaction due to (1) limited yield of product DNA (PCR plateau), (2) temperature cycling, and (3) complicated quantification methods. We have developed quadruplex priming amplification (QPA) to greatly simplify nucleic acid amplification and real-time quantification assays. The method relies on specifically designed guanine-rich primers, which after polymerase elongation are capable of spontaneous dissociation from target sites and forming DNA quadruplex. The quadruplex is characterized by significantly more favorable thermodynamics than the corresponding DNA duplexes. As a result, target sequences are accessible for the next round of priming, and DNA amplification proceeds under isothermal conditions with improved product yield. In addition, the quadruplex formation is accompanied by an increase in intrinsic fluorescence of the primers, allowing simple and accurate detection of product DNA. The chapter discusses the thermodynamic and optical principles of QPA and its application in nucleic acid diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams NM, Wang KK, Caprioli AC et al (2014) Quadruplex priming amplification for the detection of mRNA from surrogate patient samples. Analyst 139:1644–1652

    Article  CAS  PubMed  Google Scholar 

  • Bordelon H, Adams NM, Klemm AS et al (2011) Development of a low-resource RNA extraction cassette based on surface tension valves. ACS Appl Mater Interfaces 3:2161–2168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng X, Liu X, Bing T et al (2009) General peroxidase activity of G-quadruplex-hemin complexes and its application in ligand screening. Biochemistry 48:7817–7823

    Article  CAS  PubMed  Google Scholar 

  • Edwards KJ, Logan JMJ (2009) Peforming real-time PCR. In: Logan J et al (eds) Real-time PCR. Caister Academic, Norfolk, pp 85–93

    Google Scholar 

  • Gogichaishvili S, Johnson J, Gvarjaladze D et al (2014a) Isothermal amplification of DNA using quadruplex primers with fluorescent pteridine base analogue 3-methyl isoxanthopterin. Biopolymers 101:583–590

    Article  CAS  PubMed  Google Scholar 

  • Gogichaishvili S, Lomidze L, Kankia B (2014b) Quadruplex priming amplification combined with nicking enzyme for diagnostics. Anal Biochem 466:44–48

    Article  CAS  PubMed  Google Scholar 

  • Hawkins ME (2007) Synthesis, purification and sample experiment for fluorescent pteridine-containing DNA: tools for studying DNA interactive systems. Nat Protoc 2:1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Hawkins ME (2008) Fluorescent pteridine probes for nucleic acid analysis. Methods Enzymol 450:201–231

    CAS  PubMed  Google Scholar 

  • Hawkins ME, Pfleiderer W, Balis FM et al (1997) Fluorescence properties of pteridine nucleoside analogs as monomers and incorporated into oligonucleotides. Anal Biochem 244:86–95

    Article  CAS  PubMed  Google Scholar 

  • Holland PM, Abramson RD, Watson R et al (1991) Detection of specific polymerase chain reaction product by utilizing the 5′––3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88:7276–7280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson J, Okyere R, Joseph A et al (2013) Quadruplex formation as a molecular switch to turn on intrinsically fluorescent nucleotide analogs. Nucleic Acids Res 41:220–228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kankia BI (2004) Optical absorption assay for strand-exchange reactions in unlabeled nucleic acids. Nucleic Acids Res 32:e154

    Article  PubMed Central  PubMed  Google Scholar 

  • Kankia BI (2006) A real-time assay for monitoring nucleic acid cleavage by quadruplex formation. Nucleic Acids Res 34:e141

    Article  PubMed Central  PubMed  Google Scholar 

  • Kankia BI (2011) Self-dissociative primers for nucleic acid amplification and detection based on DNA quadruplexes with intrinsic fluorescence. Anal Biochem 409:59–65

    Article  CAS  PubMed  Google Scholar 

  • Kourentzi KD, Fox GE, Willson RC (2003) Hybridization-responsive fluorescent DNA probes containing the adenine analog 2-aminopurine. Anal Biochem 322:124–126

    Article  CAS  PubMed  Google Scholar 

  • Law SM, Eritja R, Goodman MF et al (1996) Spectroscopic and calorimetric characterizations of DNA duplexes containing 2-aminopurine. Biochemistry 35:12329–12337

    Article  CAS  PubMed  Google Scholar 

  • Lee MA, Squirrell DJ, Leslie DL et al (2009) Homogeneous fluorescent chemistries for real-time PCR. In: Logan J et al (eds) Real-time PCR. Caister Academic, Norfolk, pp 23–45

    Google Scholar 

  • Loh Q, Omar N, Glokler J et al (2014) IQPA: isothermal nucleic acid amplification-based immunoassay using DNAzyme as the reporter system. Anal Biochem 463:67–69

    Article  CAS  PubMed  Google Scholar 

  • Marti AA, Jockusch S, Li Z et al (2006) Molecular beacons with intrinsically fluorescent nucleotides. Nucleic Acids Res 34:e50

    Article  PubMed Central  PubMed  Google Scholar 

  • McLaughlin LW, Leong T, Benseler F et al (1988) A new approach to the synthesis of a protected 2-aminopurine derivative and its incorporation into oligodeoxynucleotides containing the Eco RI and Bam HI recognition sites. Nucleic Acids Res 16:5631–5644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niemz A, Ferguson TM, Boyle DS (2011) Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol 29:240–520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Partskhaladze T, Taylor A, Lomidze L et al (2015) Exponential quadruplex priming amplification for DNA-based isothermal diagnostics. Biopolymers 103:88–95

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW, Vandesompele J, Kubitsa M (2009) Data analysis software. In: Logan J et al (eds) Real-time PCR. Caister Academic, Norfolk, pp 65–83

    Google Scholar 

  • Taylor A, Joseph A, Okyere R et al (2013) Isothermal quadruplex priming amplification for DNA-based diagnostics. Biophys Chem 171:1–8

    Article  CAS  PubMed  Google Scholar 

  • Travascio P, Bennet AJ, Wang DY et al (1999) A ribozyme and a catalytic DNA with peroxidase activity: active sites versus cofactor-binding sites. Chem Biol 6:779–787

    Article  CAS  PubMed  Google Scholar 

  • Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308

    Article  CAS  PubMed  Google Scholar 

  • Tyagi S, Bratu DP, Kramer FR (1998) Multicolor molecular beacons for allele discrimination. Nat Biotechnol 16:49–53

    Article  CAS  PubMed  Google Scholar 

  • Van Ness J, Van Ness LK, Galas DJ (2003) Isothermal reactions for the amplification of oligonucleotides. Proc Natl Acad Sci U S A 100:4504–4509

    Article  PubMed Central  PubMed  Google Scholar 

  • Whitcombe D, Theaker J, Guy SP et al (1999) Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol 17:804–807

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by a grant (DI/23/7-230/12) from Shota Rustaveli National Science Foundation (Republic of Georgia) and a grant from the Bill & Melinda Gates Foundation through the Grand Challenges in Global Health initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Besik Kankia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kankia, B. (2015). Quadruplex Priming Amplification (QPA) for Nucleic Acid Diagnostics. In: Erdmann, V., Jurga, S., Barciszewski, J. (eds) RNA and DNA Diagnostics. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-17305-4_14

Download citation

Publish with us

Policies and ethics