Skip to main content

Termination of Elastic Range of Pressure Insensitive Materials—Isotropic and Anisotropic Initial Yield Criteria

  • Chapter
  • First Online:
Book cover Mechanics of Anisotropic Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

In this chapter basic features of isotropic versus anisotropic initial yield criteria are discussed. Two ways to account for anisotropy are presented: the explicit and implicit formulations. The explicit description of anisotropy is rigorously based on well-established theory of common invariants (Sayir, Goldenblat–Kopnov, von Mises, Hill). The implicit approach involves linear transformation tensor of the Cauchy stress that accounts for anisotropy to enhance the known isotropic criteria to be able to capture anisotropy, hydrostatic pressure insensitivity, and asymmetry of the yield surface (Barlat, Plunckett, Cazacu, Khan). The advantages and differences of both formulations are critically presented. Possible convexity loss of the classical Hill’48 yield surface in the case of strong orthotropy is examined and highlighted in contrast to unconditionally stable von Mises–Hu–Marin’s criterion. Various transitions from the orthotropic yield criteria to the transversely isotropic ones are carefully distinguished in the light of irreducibility or reducibility to the isotropic Huber–von Mises criterion in the transverse isotropy plane and appropriate symmetry class of tetragonal symmetry (classical Hill’s formulation) or hexagonal symmetry (hexagonal Hill’s or von Mises–Hu–Marin’s). The new hybrid formulation applicable for some engineering materials based on additional bulge test is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altenbach, H., Bolchoun, A., Kolupaev, V.A.: Phenomenological yield and failure criteria. In: Altenbach, H., Öchsner, A. (eds.) Plasticity of Pressure-Sensitive Materials. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  2. Barlat, F., Lian, J.: Plastic behavior and stretchability of sheet metals. Int. J. Plast. 5(1), 51 (1989)

    Article  Google Scholar 

  3. Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.-H., Chu, E.: Plane stress function for aluminium alloy sheets—part I: theory. Int. J. Plast. 19, 1297–1319 (2003)

    Article  Google Scholar 

  4. Berryman, J.G.: Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries. J. Mech. Phys. Solids 53, 2141–2173 (2005)

    Article  Google Scholar 

  5. Betten, J.: Applications of tensor functions to the formulation of yield criteria for anisotropic materials. Int. J. Plast. 4, 29–46 (1988)

    Article  Google Scholar 

  6. Boehler, J.P., Sawczuk, A.: Equilibre limite des sols anisotropes. J. Mécanique 9, 5–33 (1970)

    Google Scholar 

  7. Cazacu, O., Barlat, F.: A criterion for description of anisotropy and yield differential effects in pressure-insensitive materials. Int. J. Plast. 20, 2027–2045 (2004)

    Article  Google Scholar 

  8. Cazacu, O., Planckett, B., Barlat, F.: Orthotropic yield criterion for hexagonal close packed metals. Int. J. Plast. 22, 1171–1194 (2006)

    Article  Google Scholar 

  9. Chen, W.F., Han, D.J.: Plasticity for Structural Engineers. Springer, Berlin (1995)

    Google Scholar 

  10. Chu, E.: Generalization of Hill’s 1979 anisotropic yield criteria. In: Proceedings of the NUMISHEETS’89, pp. 199–208 (1989)

    Google Scholar 

  11. Davies, E.A.: The Bailey flow rule and associated yield surface. Trans. ASME E28(2), 310 (1961)

    Article  Google Scholar 

  12. Drucker, D.C.: Relation of experiments to mathematical theories of plasticity. J. Appl. Mech. 16, 349–357 (1949)

    Google Scholar 

  13. Dunand, M., Maertens, A.P., Luo, M., Mohr, D.: Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading—part I: plasticity. Int. J. Plast. 36, 34–49 (2012)

    Article  Google Scholar 

  14. Dvorak, G.J., Bahei-El-Din, Y.A., Macheret, Y., Liu, C.H.: An experimental study of elastic-plastic behavior of a fibrous boron-aluminum composite. Int. J. Mech. Phys. Solids 36, 655–687 (1988)

    Article  Google Scholar 

  15. Ganczarski, A., Lenczowski, J.: On the convexity of the Goldenblatt-Kopnov yield condition. Arch. Mech. 49(3), 461–475 (1997)

    Google Scholar 

  16. Ganczarski, A., Skrzypek, J.: Modeling of limit surfaces for transversely isotropic composite SCS-6/Ti-15-3. Acta Mechanica et Automatica 5(3), 24–30 (2011) (in Polish)

    Google Scholar 

  17. Ganczarski, A., Skrzypek, J.: Mechanics of Novel Materials (in Polish). Wydawnictwo Politechniki Krakowskiej, Kraków (2013)

    Google Scholar 

  18. Ganczarski, A., Skrzypek, J.: Constraints on the applicability range of Hill’s criterion: strong orthotropy or transverse isotropy. Acta Mech. 225, 2568–2582 (2014)

    Article  Google Scholar 

  19. Goldenblat, I.I., Kopnov, V.A.: Obobshchennaya teoriya plasticheskogo techeniya anizotropnyh sred, pp. 307–319. Sbornik Stroitelnaya Mehanika, Stroĭizdat, Moskva (1966)

    Google Scholar 

  20. Guest, J.J.: On the strength of ductile materials under combined stress. Philos. Mag. 50, 69–132 (1900)

    Article  Google Scholar 

  21. Haigh, B.F.: The strain-energy function and the elastic limit. Eng. Lond. 109, 158–160 (1920)

    Google Scholar 

  22. Hencky, H.: Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufen Nach-Spannungen. ZAMM 4, 323–334 (1924)

    Article  Google Scholar 

  23. Herakovich, C.T., Aboudi, J.: Thermal effects in composites. In: Hetnarski, R.B. (ed.) Thermal Stresses V, pp. 1–142. Lastran Corporation Publishing Division, Rochester (1999)

    Google Scholar 

  24. Hershey, A.V.: The plasticity of an isotropic aggregate of anisotropic face—centred cubic crystals. J. Appl. Mech. 21(3), 241–249 (1954)

    Google Scholar 

  25. Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. A193, 281–297 (1948)

    Article  Google Scholar 

  26. Hill, R.: The Mathematical Theory of Plasticity. Oxford University Press, Oxford (1950)

    Google Scholar 

  27. Hosford, W.F., Backhofen, W.A.: Strength and plasticity of textured metals. In: Backhofen, W.A., Burke, J., Coffin, L., Reed, N., Weisse, V. (eds.) Fundamentals of Deformation Processing, pp. 259–298. Syracuse University Press, Syracuse (1964)

    Google Scholar 

  28. Hosford, W.F.: Texture Strengthening. Met. Eng. Q. 6, 13–19 (1966)

    Google Scholar 

  29. Hosford, W.F.: A generalized isotropic yield criterion. Trans. ASME E39(2), 607–609 (1972)

    Article  Google Scholar 

  30. Hu, Z.W., Marin, J.: Anisotropic loading functions for combined stresses in the plastic range. J. Appl. Mech. 22, 1 (1956)

    Google Scholar 

  31. Huber, M.T.: Właściwa praca odkształcenia jako miara wytȩżenia materiału, Czas. Techn. 22, 34–40, 49–50, 61–62, 80–81, Lwów, Pisma, Vol. II, PWN, Warszawa 1956, 3–20 (1904)

    Google Scholar 

  32. Ishlinskiĭ, A.Yu.: Gipoteza prochnosti formoizmeneniya, p. 46. University, Mekh, Uchebnye Zapiski Mosk (1940)

    Google Scholar 

  33. Jackson, L.R., Smith, K.F., Lankford, W.T.: Plastic flow in anisotropic sheet steel. Am. Inst. Min. Metall. Eng. 2440, 1–15 (1948)

    Google Scholar 

  34. Khan, A.S., Kazmi, R., Farrokh, B.: Multiaxial and non-proportional loading responses, anisotropy and modeling of Ti-6Al-4V titanium alloy over wide ranges of strain rates and temperatures. Int. J. Plast. 23, 931–950 (2007)

    Article  Google Scholar 

  35. Khan, A.S., Liu, H.: Strain rate and temperature dependent fracture criteria for isotropic and anisotropic metals. Int. J. Plast. 37, 1–15 (2012)

    Article  Google Scholar 

  36. Khan, A.S., Yu, S., Liu, H.: Deformation enhanced anisotropic responses of Ti-6Al-4V alloy, part II: a stress rate and temperature dependent anisotropic yield criterion. Int. J. Plast. 38, 14–26 (2012)

    Article  Google Scholar 

  37. Kowalsky, U.K., Ahrens, H., Dinkler, D.: Distorted yield surfaces—modeling by higher order anisotropic hardening tensors. Comput. Math. Sci. 16, 81–88 (1999)

    Article  Google Scholar 

  38. Korkolis, Y.P., Kyriakides, S.: Inflation and burst of aluminum tubes. part II: an advanced yield function including deformation-induced anisotropy. Int. J. Plast. 24, 1625–1637 (2008)

    Article  Google Scholar 

  39. Lankford, W.T., Low, J.R., Gensamer, M.: The plastic flow of aluminium alloy sheet under combined loads. Trans. AIME 171, 574; TP 2238, Met. Techn., Aug. 1947

    Google Scholar 

  40. Lode, W.: Der Einfluss der mittleren Hauptspannung auf der Fliessen der Metalle, Forschungs arbeiten auf dem Gebiete des Ingenieurusesen, 303 (1928)

    Google Scholar 

  41. Luo, M., Dunand, M., Moth, D.: Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading—part II: ductile fracture. Int. J. Plast. 32–33, 36–58 (2012)

    Article  Google Scholar 

  42. Malinin, N.N., Rżysko, J.: Mechanika Materiałów. PWN, Warszawa (1981)

    Google Scholar 

  43. von Mises, R.: Mechanik der festen Körper im plastisch deformablen Zustand, Götingen Nachrichten. Math. Phys. 4(1), 582–592 (1913)

    Google Scholar 

  44. von Mises, R.: Mechanik der plastischen Formänderung von Kristallen. ZAMM 8(13), 161–185 (1928)

    Article  Google Scholar 

  45. Nigam, H., Dvorak, G.J., Bahei-El-Din, Y.A.: An experimental investigation of elastic-plastic behavior of a fibrous Boron-Aluminum composite. I. Matrix-dominated mode. Int. J. Plast. 10, 23–48 (1933)

    Article  Google Scholar 

  46. Nixon, M.E., Cazacu, O., Lebensohn, R.A.: Anisotropic response of high-purity \(\alpha \)-titanium: experimental characterization and constitutive modeling. Int. J. Plast. 26, 516–532 (2010)

    Article  Google Scholar 

  47. Ottosen, N.S., Ristinmaa, M.: The Mechanics of Constitutive Modeling. Elsevier, Amsterdam (2005)

    Google Scholar 

  48. Raniecki, B., Mróz, Z.: Yield or martensitic phase transformation conditions and dissipative functions for isotropic, pressure-insensitive alloys exhibiting SD effect. Acta Mech. 195, 81–102 (2008)

    Article  Google Scholar 

  49. Reuss, A.: Vereifachte Berechnung der plastischen Formänderungen in der Plastizitätstheorie. ZAMM 10(3), 266–274 (1933)

    Article  Google Scholar 

  50. Rogers, T.G.: Yield criteria, flow rules, and hardening in anisotropic plasticity. In: Boehler, J.P. (ed.) Yielding, Damage and Failure of Anisotropic Solids, pp. 53–79. Mechanical Engineering Publications, London (1990)

    Google Scholar 

  51. Rymarz, Cz.: Continuum Mechanics (in Polish). PWN, Warszawa (1993)

    Google Scholar 

  52. Sayir, M.: Zur Fließbedingung der Plastizitätstheorie. Ingenierurarchiv 39, 414–432 (1970)

    Article  Google Scholar 

  53. Schmidt, R.: Über den Zusammenhang von Spannungen und Formänderungen im Vestigungs-gebiet. Ing.-Arch. 3, 215–235 (1932)

    Article  Google Scholar 

  54. Skrzypek, J., Ganczarski, A.: Anisotropic initial yield and failure criteria including temperature effect. In: Hetnarski, R.B. (ed.) Encyclopedia of Thermal Stresses, vol. A, pp. 146–159. Springer, Dordrecht (2014)

    Chapter  Google Scholar 

  55. Sobotka, Z.: Theorie des plastischen Fliessens von anisotropen Körpern. Z. Angew. Math. Mechanik 49, 25–32 (1969)

    Article  Google Scholar 

  56. Spencer, A.J.M.: Theory of invariants. In: Eringen, C. (ed.) Continuum Physics, pp. 239–353. Academic Press, New York (1971)

    Google Scholar 

  57. Sun, C.T., Vaidya, R.S.: Prediction of composite properties from a representative volume element. Compos. Sci. Technol. 56, 171–179 (1996)

    Article  Google Scholar 

  58. Szczepiński, W.: On deformation-induced plastic anisotropy of sheet metals. Arch. Mech. 45(1), 3–38 (1993)

    Google Scholar 

  59. Tamma, K.K., Avila, A.F.: An integrated micro/macro modelling and computational methodology for high temperature composites. In: Hetnarski, R.B. (ed.) Thermal Stresses V, pp. 143–256. Lastran Corporation Publishing Division, Rochester (1999)

    Google Scholar 

  60. Tresca, H.: Mémoire sur l’écoulement des corps solids soumis á de fortes pressions. Comptes Rendus de l’Académie des Sciences 59, 754–758 (1864)

    Google Scholar 

  61. Tsai, S.T., Wu, E.M.: A general theory of strength for anisotropic materials. Int. J. Numer. Methods Eng. 38, 2083–2088 (1971)

    Google Scholar 

  62. Voyiadjis, G.Z., Thiagarajan, G.: An anisotropic yield surface model for directionally reinforced metal-matrix composites. Int. J. Plast. 11, 867–894 (1995)

    Article  Google Scholar 

  63. Westergaard, H.M.: On the resistance of ductile materials to combined stresses in two and three directions perpendicular to one another. J. Frankl. Inst. 189, 627–640 (1920)

    Article  Google Scholar 

  64. Yoshida, F., Hamasaki, H.M., Uemori, T.: A user-friendly 3D yield function to describe anisotropy of steel sheets. Int. J. Plast. 45, 119–139 (2013)

    Article  Google Scholar 

  65. Życzkowski, M.: Anisotropic yield conditions. In: Lemaitre, J. (ed.) Handbook of Materials Behavior Models, pp. 155–165. Academic Press, San Diego (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur W. Ganczarski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ganczarski, A.W., Skrzypek, J.J. (2015). Termination of Elastic Range of Pressure Insensitive Materials—Isotropic and Anisotropic Initial Yield Criteria. In: Skrzypek, J., Ganczarski, A. (eds) Mechanics of Anisotropic Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-17160-9_5

Download citation

Publish with us

Policies and ethics