Skip to main content

General Concept of Limit Surfaces—Convexity and Normality Rules, Material Stability

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

General nature of yield or failure criteria terminating elastic range of isotropic or anisotropic materials is summarized. As shown, the hydrostatic pressure sensitivity of anisotropic materials can be captured either by first stress and second common deviatoric invariant direct use (Tsai–Wu), or by the second common stress invariant in an indirect fashion (von Mises). Tension/compression asymmetry in anisotropic materials is accounted for either by presence of first common invariant (only translation, Tsai–Wu) or third common invariant (distortion, Kowalsky). Comparison of two ways to capture anisotropic response, more rigorous explicit common invariants formulations or implicit approaches based on extension of traditional isotropic criteria in terms of transformed invariants (Barlat, Khan) capable of capturing a complete distortion, is shown. Convexity requirement of limit surfaces is discussed and compared for two material behaviors by the use of Drucker’s material stability postulate extended to multi-dissipative response or Sylvester’s stability condition based on positive definiteness of the tangent stiffness or compliance matrices of hyperelastic material. Generalized Drucker’s postulate based on elastic–plastic stiffness matrix is also shown.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Inequality in a weak form with respect to accounting for possible perfectly plastic deformation.

References

  1. Abu Al-Rub: R.K., Voyiadjis, G.Z.: On the coupling of anisotropic damage and plasticity models for ductile materials. Int. J. Solids Struct. 40, 2611–2643 (2003)

    Google Scholar 

  2. Barlat, F., Lege, D.J., Brem, J.C.: A six-component yield function for anisotropic materials. Int. J. Plast. 7, 693–712 (1991)

    Article  Google Scholar 

  3. Bielski, J., Skrzypek, J., Kuna-Ciskał, H.: Implementation of a model of coupled elastic-plastic unilateral damage material to finite element code. Int. J. Damage Mech. 15, 5–39 (2006)

    Article  Google Scholar 

  4. Cazacu, O., Barlat, F.: A criterion for description of anisotropy and yield differential effects in pressure-insensitive materials. Int. J. Plast. 20, 2027–2045 (2004)

    Google Scholar 

  5. Cazacu, O., Planckett, B., Barlat, F.: Orthotropic yield criterion for hexagonal close packed metals. Int. J. Plast. 22, 1171–1194 (2006)

    Article  Google Scholar 

  6. Chaboche, J.-L.: Thermodynamic formulation of constitutive equations and application to the viscoplasticity and viscoelasticity of metals and polymers. Int. J. Solids Struct. 34(18), 2239–2254 (1997)

    Article  Google Scholar 

  7. Chen, W.F., Han, D.J.: Plasticity for Structural Engineers. Springer, Berlin (1995)

    Google Scholar 

  8. Drucker, D.C.: A more fundamental approach to plastic stress-strain relations, Proceedings of the 1st US National Congress of Applied Mechanics, Chicago, 487–491 (1951)

    Google Scholar 

  9. Drucker, D.C.: On the postulate of stability of material in the mechanics of continua. J Méchanique 3, 235–249 (1964)

    Google Scholar 

  10. Egner, H.: On the full coupling between thermo-plasticity and thermo-damage in thermodynamic modeling of dissipative materials. Int. J. Solids Struct. 49, 279–288 (2012)

    Article  Google Scholar 

  11. Ganczarski, A., Skrzypek, J.: Mechanics of Novel Materials (in Polish). Wydawnictwo, Politechniki Krakowskiej, Poland (2013)

    Google Scholar 

  12. Herakovich, C.T., Aboudi, J.: Thermal effects in composites. In: Hetnarski, R.B. (ed.) Thermal Stresses V, pp. 1–142. Publications Division, Lastran Corp (1999)

    Google Scholar 

  13. Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. A193, 281–297 (1948)

    Article  Google Scholar 

  14. Hu, Z.W., Marin, J.: Anisotropic loading functions for combined stresses in the plastic range. J. Appl. Mech. 22, 1 (1956)

    Google Scholar 

  15. Iyer, S.K.: Viscoplastic model development to account for strength differential: application to aged Inconel 718 at elevated temperature. Ph.D thesis, The Pennsylvania State University (2000)

    Google Scholar 

  16. Jackson, L.R., Smith, K.F., Lankford, W.T.: Plastic flow in anisotropic steel sheet. Am. Inst. Min. Metall. Eng. 2440, 1–15 (1948)

    Google Scholar 

  17. Khan, A.S., Liu, H.: Strain rate and temperature dependent fracture criteria for isotropic and anisotropic metals. Int. J. Plast. 37, 1–15 (2012)

    Article  Google Scholar 

  18. Khan, A.S., Yu, S., Liu, H.: Deformation enhanced anisotropic responses of Ti-6Al-4V alloy, Part II: A stress rate and temperature dependent anisotropic yield criterion. Int. J. Plast. 38, 14–26 (2012)

    Article  Google Scholar 

  19. Kowalewski, Z.L., Śliwowski, M.: Effect of cyclic loading on the yield surface evolution of 18G2A low-alloy steel. Int. J. Mech. Sci. 39(1), 51–68 (1997)

    Article  Google Scholar 

  20. Kowalsky, U.K., Ahrens, H., Dinkler, D.: Distorted yield surfaces—modeling by higher order anisotropic hardening tensors. Comput. Math. Sci. 16, 81–88 (1999)

    Article  Google Scholar 

  21. Kuna-Ciskał, H., Skrzypek, J.: CDM based modelling of damage and fracture mechanisms in concrete under tension and compression. Eng. Fract. Mech. 71, 681–698 (2004)

    Article  Google Scholar 

  22. Lankford, W.T., Low, J.R., Gensamer, M.: The plastic flow of aluminium alloy sheet under combined loads. Transactions on AIME 171, 574; TP 2238, Meteorological Technology, August 1947

    Google Scholar 

  23. Luo, X.Y., Li, M., Boger, R.K., Agnew, S.R., Wagoner, R.H.: Hardening evolution of AZ31B Mg sheet. Int. J. Plast. 23, 44–86 (2007)

    Article  Google Scholar 

  24. Murakami, S.: Continuum Damage Mechanics. Springer, Berlin (2012)

    Book  Google Scholar 

  25. Ottosen, N.S., Ristinmaa, M.: The Mechanics of Constitutive Modeling. Elsevier, Amsterdam (2005)

    Google Scholar 

  26. Plunkett, B., Cazacu, O., Barlat, F.: Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metal. Int. J. Plast. 24, 847–866 (2008)

    Article  Google Scholar 

  27. Raniecki, B., Mróz, Z.: Yield or martensitic phase transformation conditions and dissipative functions for isotropic, pressure-insensitive alloys exhibiting SD effect. Acta Mech. 195, 81–102 (2008)

    Article  Google Scholar 

  28. Sayir, M.: Zur Fließbedingung der Plastiztätstheorie. Ingenierarchiv 39, 414–432 (1970)

    Google Scholar 

  29. Simo, J.C., Yu, J.W.: Strain- and stress-based continuum damage models: I-Formulation II-Computational aspects. Int. J. Solid Struct. 23, 821–869 (1987)

    Article  Google Scholar 

  30. Skrzypek, J., Ganczarski, A.: Anisotropic initial yield and failure criteria including temperature effect. In: Hetnarski, R. 2013, Encyclopedia of Thermal Stresses. (2014). doi:10.1007/978-94-007-2739-7, \(\copyright \) Springer Science+Business Media Dordrecht

  31. Sun, C.T., Vaidya, R.S.: Prediction of composite properties from a representative volume element. Compos. Sci. Technol. 56, 171–179 (1996)

    Article  Google Scholar 

  32. Tsai, S.T., Wu, E.M.: A general theory of strength for anisotropic materials. Int. J. Numer. Methods Eng. 38, 2083–2088 (1971)

    Google Scholar 

  33. Voyiadjis, G.Z., Thiagarajan, G.: An anisotropic yield surface model for directionally reinforced metal-matrix composites. Int. J. Plast. 11, 867–894 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur W. Ganczarski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ganczarski, A.W., Skrzypek, J.J. (2015). General Concept of Limit Surfaces—Convexity and Normality Rules, Material Stability. In: Skrzypek, J., Ganczarski, A. (eds) Mechanics of Anisotropic Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-17160-9_4

Download citation

Publish with us

Policies and ethics