Skip to main content

Autism, Development and Neural Plasticity

  • Chapter
  • First Online:

Abstract

In this chapter, we show evidences derived from carefully designed animal experiments and clinical data, supporting a role of neuroplasticty on the development and physiopathology of autism. Although the exact mode in which genetic and environmental factors interact in various psychiatric conditions, including autism remains largely unclear, a comprehensive understanding of these complex interactions, including the contribution of immune molecules, in the establishment of neuronal connectivity that may drive into phenotypes of autism spectrum disorder (ASD) is of the greatest importance to understand its causes and develop successful strategies to treat and revert its consequences. Available evidence strongly supports the involvement of maladaptive neuroplasticity, mutations, epigenetic modification, and individual miRNA-related pathways in the pathogenesis and pathophysiology of the complex clinical phenotypes that is included in ASD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abello, VB. (1970) Wolf children: truth or fallacy? Clin Pediat 9:425–429

    CAS  PubMed  Google Scholar 

  • Anderson, GM. (2014) Autism biomarkers: challenges, pitfalls and possibilities. J Autism Dev Disord

    Google Scholar 

  • Andrasfalvy BK, Magee JC (2004) Changes in AMPA receptor currents following LTP induction on rat CA1 pyramidal neurons. J Physiol 559(Pt 2):543–554

    CAS  PubMed Central  PubMed  Google Scholar 

  • Asperger H (1944) Die “Autistichen Psychopaten” im Kindesalter. Arch Psychiat Nervkrank 117:76–136

    Google Scholar 

  • Banerjee S, Riordan M, Baht MA (2014) Genetic aspects of autism spectrum disorders: insights from animal models. Front Cell Neurosci 8:58

    PubMed Central  PubMed  Google Scholar 

  • Barry G (2014) Integrating the roles of long and small non-coding RNA in brain function and disease. Mol Psychiatry 19:410–416

    CAS  PubMed  Google Scholar 

  • Bashir ZI, Alford S, Davies SN, Randall AD, Collingridge GL (1991) Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature 349:156–158

    CAS  PubMed  Google Scholar 

  • Bavelier D, Hirshorn EA (2010) I see where you’re hearing: how cross-modal plasticity may exploit homologous brain structures. Nat Neurosci 13:1309–1311

    CAS  PubMed  Google Scholar 

  • Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ (2004) Autism and abnormal development of brain connectivity. J Neurosci 24:9228–9231

    CAS  PubMed  Google Scholar 

  • Ben-David E, Shifman S (2012a) Networks of neuronal genes affected by common and rare variants in autism spectrum disorders. PLoS Genet 8:e1002556

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ben-David E, Shifman S (2012b) Networks of neuronal genes affected by common and rare variants in autism spectrum disorders. PLos Genet 8(3):e1002556

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ben-David E, Shifman S (2013) Combined analysis of exome sequencing points toward a major role for transcription regulation during brain development in autism. Mol Psychiatry 18:1054–1056

    CAS  PubMed  Google Scholar 

  • Berardi N, Pizzorusso T Maffei L (2000) Critical periods during sensory development. Curr Opin Neurobiol 10:138–145

    CAS  PubMed  Google Scholar 

  • Bergado-Rosado JA, Almaguer-Melian W (2000) Cellular mechanisms of neuroplasticity. Rev Neurol 31:1074–1095

    CAS  PubMed  Google Scholar 

  • Berger JM, Rohn TT, Oxford JT (2013) Autism as the early closure of a neuroplastic critical period normally seen in adolescence. Biol Syst Open Access 1. doi:10.4172/2329-6577.1000118

    Google Scholar 

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol (Lond) 232:331–356

    CAS  Google Scholar 

  • Borrelli E, Nestler EJ, Allis CD, Sassone-Corsi P (2008) Decoding the epigenetic language of neuronal plasticity. Neuron 60:961–974

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Progr Neurobiol 76:99–125

    CAS  Google Scholar 

  • Cajal SR (1911) Hystologie du systeme nerveux de l’homme et des vertebres. Maloine, Paris.

    Google Scholar 

  • Cao C, Rioult-Pedotti MS, Migani P, Yu CJ, Tiwari R, Parang K, Spaller MR, Geobel DJ, Marshall J (2013) Impairment of TrkB-PSD-95 signaling in Angelman syndrome. PLoS Biol 11(2):e1001478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chan AW, Kocerha J (2012) The path to microRNA therapeutics in psychiatric and neurodegenerative disorders. Front Genet 3:82. doi:10.3389/fgene.2012.00082. (eCollection@2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chez MG, Dowling T, Patel PB, Khanna P, Kominsky M (2007) Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatr Neurol 36:361–365

    PubMed  Google Scholar 

  • Collingridge GL (1985) Long-term potentiation in the hippocampus: mechanism of initiation and modulation by neurotransmitters. Trends Pharmacol Sci 6:407–411

    CAS  Google Scholar 

  • Collingridge GL, Bliss TVP (1987) NMDA receptors—their role in long-term potentiation. Trends Neurosci 10:288–293

    CAS  Google Scholar 

  • Collingridge GL, Randall AD, Davies CH, Alford S (1992) The synaptic activation of NMDA receptors and Ca2+ signalling in neurons. Ciba Found Symp 164:162–171; (discussion 172-5)

    CAS  PubMed  Google Scholar 

  • Collingridge GL, Volianskis A, Bannister N, France G, Hanna L, Mercier M, Tidball P, Fang G, Irvine MW, Costa BM, Monaghan DT, Bortolotto ZA, Molnar E, Lodge D, Jane DE (2013) The NMDA receptor as a target for cognitive enhancement. Neuropharmacology 64:13–26 doi:10.1016/j.neuropharm.2012.06.051. (Epub@2012 Jul 11)

    CAS  PubMed  Google Scholar 

  • Costa MC, Leitao AL, Enguita FJ (2012) Biogenesis and mechanism of action of small non-coding RNAs: insights from the point of view of structural biology. Int J Mol Sci 13:10268–10295

    CAS  PubMed Central  PubMed  Google Scholar 

  • Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N (2009) Translational control of long-lasting synaptic plasticity and memory. Neuron 61:10–26

    CAS  PubMed  Google Scholar 

  • Courchesne E (1991) Neuroanatomic imaging in autism. Pediatrics 87:781–790

    CAS  PubMed  Google Scholar 

  • Courchesne E (1997) Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Curr Opin Neurobiol 7:269–278

    CAS  PubMed  Google Scholar 

  • Covic M, Karaca E, Lie DC (2010) Epigenetic regulation of neurogenesis in the adult hippocampus. Heredity 105:122–134

    CAS  PubMed  Google Scholar 

  • Crandall FM (1897) Hospitalism. Arch Pediat 14:448–454

    Google Scholar 

  • Cristino AS, Williams SM, Hawi Z, An JY, Bellgrove MA, Schwartz CE, Costa LF, Claudianos C (2014) Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system. Mol Psychiatry 19:294–301

    CAS  PubMed  Google Scholar 

  • D’hulst C, Kooy RF (2009) Fragile X syndrome: from molecular genetics to therapy. J Med Genet 46:577–584

    PubMed  Google Scholar 

  • Damarla SR, Keller TA, Kana RK, Cherkassky VL, Williams DL, Minshew NJ, Just MA (2010) Cortical underconnectivity coupled with preserved visuospatial cognition in autism: evidence from an fMRI study of an embedded figures task. Autism Res 3:273–279

    PubMed Central  PubMed  Google Scholar 

  • Datwani A, Mcconnell MJ, Kanold PO, Micheva KD, Busse B., Shamloo M, Smith SJ, Shatz CJ (2009) Classical MHCI molecules regulate retinogeniculate refinement and limit ocular dominance plasticity. Neuron 64:463–470

    CAS  PubMed Central  PubMed  Google Scholar 

  • Day JJ, Sweatt JD (2011) Cognitive neuroepigenetics: a role for epigenetic mechanisms in learning and memory. Neurobiol Learn Mem 96:2–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Theije CG, Wu J, Da Silva SL, Kamphuis PJ, Garssen J, Korte SM, Kraneveld AD (2011) Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. Eur J Pharmacol 668(Suppl 1):S70–S80 doi:10.1016/j.ejphar.2011.07.013. (Epub@2011 Jul 27)

    PubMed  Google Scholar 

  • De Theije CG, Bavelaar BM, Lopes Da Silva S, Korte SM, Olivier B, Garssen J, Kraneveld AD (2014a) Food allergy and food-based therapies in neurodevelopmental disorders. Pediatr Allergy Immunol 25, 218–226

    PubMed  Google Scholar 

  • De Theije CG, Wopereis H, Ramadan M, Van ET, Lambert J, Knol J, Garssen J, Kraneveld AD, Oozeer R (2014b) Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun 37:197–206 doi:10.1016/j.bbi.2013.12.005. (Epub@2013 Dec 11)

    PubMed  Google Scholar 

  • Denk F, Mcmahon SB (2012) Chronic pain: emerging evidence for the involvement of epigenetics. Neuron 73:435–444

    CAS  PubMed Central  PubMed  Google Scholar 

  • Derkach V, Barria A, Soderling TR (1999) Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci USA 96:3269–3274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deverman BE, Patterson PH (2009) Cytokines and CNS development. Neuron 64:61–78

    CAS  PubMed  Google Scholar 

  • Di MA, Kelly C, Grzadzinski R, Zuo XN, Mennes M, Mairena MA, Lord C, Castellanos FX, Milham MP (2011) Aberrant striatal functional connectivity in children with autism. Biol Psychiatry 69:847–856

    Google Scholar 

  • Dijkstra G, Van GH, Jansen PL, Moshage H (2004) Targeting nitric oxide in the gastrointestinal tract. Curr Opin Investig Drugs 5:529–536

    CAS  PubMed  Google Scholar 

  • Dupuis JP, Ladepeche L, Seth H, Bard L, Varela J, Mikasova L, Bouchet D, Rogemond V, Honnorat J, Hanse E, Groc L (2014) Surface dynamics of GluN2B-NMDA receptors controls plasticity of maturing glutamate synapses. EMBO J 33:842–861

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ebisch SJ, Gallese V, Willems RM, Mantini D, Groen WB, Romani GL, Buitelaar JK, Bekkering H (2011) Altered intrinsic functional connectivity of anterior and posterior insula regions in high-functioning participants with autism spectrum disorder. Hum Brain Mapp 32:1013–1028

    PubMed  Google Scholar 

  • Edmonson C, Ziats MN Rennert OM (2014) Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum. Mol Autism 5:3–5

    PubMed Central  PubMed  Google Scholar 

  • Fagiolini M, Jensen CL, Champagne FA (2009) Epigenetic influences on brain development and plasticity. Curr Opin Neurobiol 19:207–212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440

    CAS  PubMed  Google Scholar 

  • Flexner LB, Flexner JB, De La Haba G, Roberts RB (1965) Loss of memory as related to inhibition of cerebral protein synthesis. J Neurochem 12:535–541

    CAS  PubMed  Google Scholar 

  • Flood JF, Bennett EL, Orme E, Rosenzweig MR (1975) Relation of memory formation to controlled amounts of brain protein synthesis. Physiol Behav 15:97–102

    CAS  PubMed  Google Scholar 

  • Fourgeaud L, Boulanger LM (2010) Role of immune molecules in the establishment and plasticity of glutamatergic synapses. Eur J Neurosci 32:207–217

    PubMed  Google Scholar 

  • Fourgeaud L, Davenport CM., Tyler CM, Cheng TT, Spencer M.B. & Boulanger LM (2010) MHC class I modulates NMDA receptor function and AMPA receptor trafficking. Proc Natl Acad Sci USA 107:22278–22283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frey U, Krug M, Reymann KG, Matthies H (1988) Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res 452:57–65

    CAS  PubMed  Google Scholar 

  • Frey U, Morris RGM (1997a) Synaptic tagging and long-term potentiation. Nature 385:533–536

    CAS  PubMed  Google Scholar 

  • Frey U, Morris RGM (1997b) Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci 21:181–188

    Google Scholar 

  • Gao J, Wang WY, Mao YW, Graff J, Guan JS, Pan L, Mak G, Kim D, Su SC, Tsai LH (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466:1105–1109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garay PA, Mcallister AK (2010) Novel roles for immune molecules in neural development: implications for neurodevelopmental disorders. Front Synaptic Neurosci 2:136 doi:10.3389/fnsyn.2010.00136. (eCollection@2010)

    PubMed Central  PubMed  Google Scholar 

  • Gipson TJ, Johnston MV (2012) Plasticity and mTOR: towards restoration of impaired synaptic plasticity in mTOR-Related neurogenetic disorders. Neural Plast 2012:486402

    PubMed Central  PubMed  Google Scholar 

  • Goldani AA, Downs SR, Widjaja F, Lawton B, Hendren RL (2014) Biomarkers in autism. Front Psychiatry 5:100 doi:10.3389/fpsyt.2014.00100. (eCollection@2014)

    PubMed Central  PubMed  Google Scholar 

  • Greenough WT, Black JE, Wallace CS (1987) Experience and brain development. Child Dev 58:539–559

    CAS  PubMed  Google Scholar 

  • Hansen KF, Karelina K, Sakamoto K, Wayman GA, Impey S, Obrietan K (2013) miRNA-132: a dynamic regulator of cognitive capacity. Brain Struct Funct 218:817–831

    PubMed Central  PubMed  Google Scholar 

  • Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287:2262–2267

    CAS  PubMed  Google Scholar 

  • Hedou G, Mansuy IM (2003) Inducible molecular switches for the study of long-term potentiation. Philos Trans R Soc Lond B Biol Sci 358 797–804

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoeffer CA, Klann E (2009) mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 33:67–75

    PubMed Central  PubMed  Google Scholar 

  • Hollander JA, Im HI, Amelio AL, Kocerha J, Bali P, Lu Q, Willoughby D, Wahlestedt C, Conkright MD, Kenny PJ (2010) Striatal microRNA controls cocaine intake through CREB signalling. Nature 466:197–202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu VW, Frank BC, Heine S, Lee NH, Quackenbush J (2006) Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes. BMC Genomics 7:118

    PubMed Central  PubMed  Google Scholar 

  • Huang H, Tindall DJ (2007) Dynamic FoxO transcription factors. J Cell Sci 120:2479–2487

    CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1964) Effects of monocular deprivation in kittens. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 248:492–497

    CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1998) Early exploration of the visual cortex. Neuron 20:401–412

    CAS  PubMed  Google Scholar 

  • Huber AB, Kolodkin AL, Ginty DD, Cloutier J-F (2003) Signaling at the growth cone: ligand-receptor complexes and the control of axon growth. Annu Rev Neurosci 26:509–563

    CAS  PubMed  Google Scholar 

  • Huber KM, Mauk MD, Kelly PT (1995a) Distinct LTP induction mechanisms: contribution of NMDA receptors and voltage-dependent calcium channels. J Neurophysiol 73:270–279

    CAS  PubMed  Google Scholar 

  • Huber KM, Mauk MD, Kelly PT (1995b) LTP induced by activation of voltage-dependent Ca2+ channels requires protein kinase activity. Neuroreport 6:1281–1284

    CAS  PubMed  Google Scholar 

  • Huber KM, Mauk MD, Thompson C, Kelly PT (1995c) A critical period of protein kinase activity after tetanic stimulation is required for the induction of long-term potentiation. Learn Mem 2:81–100

    CAS  PubMed  Google Scholar 

  • Hwang JY, Aromolaran KA, Zukin RS (2013) Epigenetic mechanisms in stroke and epilepsy. Neuropsychopharmacology 38:167–182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iacoangeli A, Bianchi R, Tiedge H (2010) Regulatory RNAs in brain function and disorders. Brain Res 1338:36–47 doi:10.1016/j.brainres.2010.03.042. (Epub@2010 Mar@20)

    CAS  PubMed Central  PubMed  Google Scholar 

  • Im HI, Kenny PJ (2012) MicroRNAs in neuronal function and dysfunction. Trends Neurosci 35:325–334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jessell TM, Sanes JR (2013) Differentiation and survival of nerve cells. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (eds) Principles of neural science, 5th edn. McGraw Hill Medical, New York, pp 2618–2664

    Google Scholar 

  • Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ (2007) Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex 17:951–961

    PubMed  Google Scholar 

  • Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA (2009) Atypical frontal-posterior synchronization of Theory of Mind regions in autism during mental state attribution. Soc Neurosci 4:135–152

    PubMed Central  PubMed  Google Scholar 

  • Kanner L (1943) Autistic disturbances of affective contact. Nerv Child 2:217–250

    Google Scholar 

  • Kovacs R, Rabanus A, Otahal J, Patzak A, Kardos J, Albus K, Heinemann U, Kann O (2009) Endogenous nitric oxide is a key promoting factor for initiation of seizure-like events in hippocampal and entorhinal cortex slices. J Neurosci 29:8565–8577

    CAS  PubMed  Google Scholar 

  • Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274–1281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krug M, Lössner B, Ott T (1984) Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats. Brain Res Bull 13:39–42

    CAS  PubMed  Google Scholar 

  • Leblanc JJ, Fagiolini M (2011) Autism: A “Critical Period” Disorder? Neural Plast 2011

    Google Scholar 

  • Lee J, Ryu H (2010) Epigenetic modification is linked to Alzheimer’s disease: is it a maker or a marker? BMB Rep 43:649–655

    CAS  PubMed  Google Scholar 

  • Levenson JM, Sweatt JD (2005) Epigenetic mechanisms in memory formation. Nat Rev Neurosci 6:108–118

    CAS  PubMed  Google Scholar 

  • Lisman JE, Zhabotinsky AM (2001) A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 31:191–201

    CAS  PubMed  Google Scholar 

  • Lit L, Sharp FR, Bertoglio K, Stamova B, Ander BP, Sossong AD. Hendren RL (2012) Gene expression in blood is associated with risperidone response in children with autism spectrum disorders. Pharmacogenomics J 12:368–371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu H, Kohane IS (2009) Tissue and process specific microRNA-mRNA co-expression in mammalian development and malignancy. PLoS ONE 4:e5436

    PubMed Central  PubMed  Google Scholar 

  • Lubin FD (2011) Epigenetic gene regulation in the adult mammalian brain: multiple roles in memory formation. Neurobiol Learn Mem 96:68–78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lubin FD, Gupta S, Parrish R.R., Grissom NM, Davis RL (2011) Epigenetic mechanisms: critical contributors to long-term memory formation. Neuroscientist 17:616–632

    CAS  PubMed  Google Scholar 

  • Lyons V, Fitzgerald M (2007) Did Hans Asperger (1906–1980) have Asperger Syndrome. J Autism Dev Disord 37:2020–2021

    PubMed  Google Scholar 

  • Magill ST, Cambronne XA, Luikart BW, Lioy DT, Leighton BH, Westbrook GL, Mandel G, Goodman RH (2010) microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci USA 107:20382–20387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marín O, Rubenstein JLR (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:483

    Google Scholar 

  • Mathers JC, Mckay JA (2009) Epigenetics–potential contribution to fetal programming. Adv Exp Med Biol 646:119–123

    PubMed  Google Scholar 

  • Matthies H (1976) Cellular mechanisms of learning processes and the shaping of memory. Z Psychol 184:308–328

    CAS  PubMed  Google Scholar 

  • Matthies H (1989) In search of cellular mechanisms of memory. Progr Neurobiol 32:277–349

    CAS  Google Scholar 

  • Matthies H, Frey U, Reymann K, Krug M, Jork R, Schroeder H (1990) Different mechanisms and multiple stages of LTP. Adv Exp Med Biol 268:359–368

    CAS  PubMed  Google Scholar 

  • Mattson MP, Keller JN, Begley JG (1998) Evidence for synaptic apoptosis. Exp Neurol 153:35–48

    CAS  PubMed  Google Scholar 

  • Mbadiwe T, Millis RM (2013) Epigenetics and autism. Autism Res Treat 2013:826156. doi:10.1155/2013/826156. (Epub 2013 Sep 15)

    PubMed Central  PubMed  Google Scholar 

  • Mcallister AK (2007) Dynamic aspects of CNS synapse formation. Annu Rev Neurosci 30:450

    Google Scholar 

  • Mcnair K, Davies CH, Cobb SR (2006) Plasticity-related regulation of the hippocampal proteome. Eur J Neurosci 23:575–580

    PubMed  Google Scholar 

  • Mehler MF (2008) Epigenetics and the nervous system. Annals Neurol 64:602–617

    CAS  Google Scholar 

  • Mellios N, Sur M (2012) The Emerging Role of microRNAs in Schizophrenia and Autism Spectrum Disorders. Front Psychiatry 3:39 doi:10.3389/fpsyt.2012.00039. (eCollection@2012)

    PubMed Central  PubMed  Google Scholar 

  • Merzenich MM, Kaas JH, Wall J, Nelson RJ, Sur M, Felleman D (1983) Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience 8:33–55

    CAS  PubMed  Google Scholar 

  • Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A, Zook JM (1984) Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol 20(224):591–605

    Google Scholar 

  • Minshew NJ, Keller TA (2010) The nature of brain dysfunction in autism: functional brain imaging studies. Curr Opin Neurol 23:124–130

    PubMed Central  PubMed  Google Scholar 

  • Monnet-Tschudi F, Defaux A, Braissant O, Cagnon L, Zurich MG (2011) Methods to assess neuroinflammation. Curr.Protoc.Toxicol (Chap. 12:Unit12.19). doi:10.1002/0471140856.tx1219s50

    Google Scholar 

  • Mor E, Cabilly Y, Goldshmit Y, Zalts H, Modai S, Edry L, Elroy-Stein O, Shomron N (2011) Species-specific microRNA roles elucidated following astrocyte activation. Nucleic Acids Res 39:3710–3723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moretti P, Levenson JM, Battaglia F, Atkinson R, Teague R, Antalffy B, Armstrong D, Arancio O, Sweatt JD, Zoghbi HY (2006) Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci 26:319–327

    CAS  PubMed  Google Scholar 

  • Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, Courchesne E, Everall IP (2010) Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry 68:368–376

    PubMed  Google Scholar 

  • Nedivi E, Hevroni D, Naot D, Israeli D, Citri Y (1993) Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nature 363:718–722

    CAS  PubMed  Google Scholar 

  • Nottebohm F (1989) From bird song to neurogenesis. Sci Am 260:74–79

    CAS  PubMed  Google Scholar 

  • Nottebohm F (2011) Song learning in birds offers a model for neuronal replacement in adult brain. In: Seki T et al (ed) Neurogenesis in the Adult Brain I: neurobiology. Springer Verlag. Berlin, pp 47–84

    Google Scholar 

  • O’shea KS (2001) Directed differentiation of embryonic stem cells: genetic and epigenetic methods. Wound Rep Reg 9:443–459

    Google Scholar 

  • Ohtsuka M, Inoko H, Kulski JK, Yoshimura S (2008) Major histocompatibility complex (Mhc) class Ib gene duplications, organization and expression patterns in mouse strain C57BL/6. BMC. Genomics 9:178. doi:10.1186/1471-2164-9-178

    PubMed Central  PubMed  Google Scholar 

  • Olde Loohuis NF, Kos A, Martens GJ, Van BH, Nadif KN, Aschrafi A (2012) MicroRNA networks direct neuronal development and plasticity. Cell Mol Life Sci 69:89–102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Onore C, Careaga M, Ashwood P (2012a) The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun 26:383–392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Onore C, Van De Water J, Ashwood P (2012b) Decreased levels of EGF in plasma of children with autism spectrum disorder. Autism Res Treat 2012:205362. doi:10.1155/2012/205362. (Epub@2012 Mar 5)

    PubMed Central  PubMed  Google Scholar 

  • Paluszkiewicz SM, Martin BS, Huntsman MM (2011) Fragile X Syndrome: the GABAergic system and circuit dysfunction. Dev Neurosci 33(5):349–364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pardo CA, Vargas DL, Zimmerman AW (2005) Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry 17:485–495

    PubMed  Google Scholar 

  • Park CS, Tang SJ (2009) Regulation of microRNA expression by induction of bidirectional synaptic plasticity. J Mol Neurosci 38:50–56

    CAS  PubMed  Google Scholar 

  • Pate M, Damarla V, Chi DS, Negi S, Krishnaswamy G (2010) Endothelial cell biology: role in the inflammatory response. Adv Clin Chem 52:109–130

    CAS  PubMed  Google Scholar 

  • Peca J, Feng G (2012) Cellular and synaptic network defects in autism. Curr Opin Neurobiol 22:866–872

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pescosolido MF, Yang U, Sabbagh M, Morrow EM (2012) Lighting a path: genetic studies pinpoint neurodevelopmental mechanisms in autism and related disorders. Dialog Clin Neurosci 14:239–252

    Google Scholar 

  • Pizzarelli R, Cherubini E (2011) Alterations of GABAergic signaling in autism spectrum disorders. Neural Plast 2011(2011):297153

    PubMed Central  PubMed  Google Scholar 

  • Puckett RE, Lubin FD (2011) Epigenetic mechanisms in experience-driven memory formation and behavior. Epigenomics 3:649–664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qureshi IA, Mehler MF (2010) Epigenetic mechanisms underlying human epileptic disorders and the process of epileptogenesis. Neurobiol Dis 39:53–60

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rinaldi T, Kulanagara K, Antoniello K, Markram H (2007) Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc Nat Acad Sci U S A 104:13501–13506

    CAS  Google Scholar 

  • Rodriguez JI, Kern JK (2011) Evidence of microglial activation in autism and its possible role in brain underconnectivity. Neuron Glia Biol 7:205–213

    PubMed Central  PubMed  Google Scholar 

  • Rosenzweig MR, Krech D, Bennett EL, Diamond MC (1962a) Effects of environmental complexity and training on brain chemistry and anatomy: a replication and extension. J Comp Physiol Psychol 55:429–437

    CAS  PubMed  Google Scholar 

  • Rosenzweig MR, Krech D, Bennett EL, Zolman JF (1962b) Variation in environmental complexity and brain measures. J Comp Physiol Psychol 55:1092–1095

    CAS  PubMed  Google Scholar 

  • Rossi F, Gianola S, Corvetti L (2007) Regulation of intrinsic neuronal properties for axon growth and regeneration. Prog Neurobiol 81:1–28

    CAS  PubMed  Google Scholar 

  • Sarachana T, Zhou R, Chen G, Manji HK, Hu VW (2010) Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med 2:23

    PubMed Central  PubMed  Google Scholar 

  • Scheiffele P (2003) Cell-cell signalling during synapse formation in the CNS. Annu Rev Neurosci 26:485–508

    CAS  PubMed  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289

    CAS  PubMed  Google Scholar 

  • Shatz CJ (2009) MHC class I: an unexpected role in neuronal plasticity. Neuron 64:40–45

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sinner J (2012) Defining synaesthesia. British J Psychol 103:1–15

    Google Scholar 

  • Smith SD (2011) Approach to epigenetic analysis in language disorders. J Neurodev Disord 3:356–364

    PubMed Central  PubMed  Google Scholar 

  • Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71

    CAS  PubMed  Google Scholar 

  • Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1:14

    PubMed Central  PubMed  Google Scholar 

  • Stubbs EG, Ritvo ER, Mason-Brothers A (1985) Autism and shared parental HLA antigens. J Am Acad Child Psychiatry 24:182–185

    CAS  PubMed  Google Scholar 

  • Stubbs G (1981) Shared parental HLA antigens and autism. Lancet 2:534

    CAS  PubMed  Google Scholar 

  • Syken J, Grandpre T, Kanold PO, Shatz CJ (2006) PirB restricts ocular-dominance plasticity in visual cortex. Science 313:1795–1800

    CAS  PubMed  Google Scholar 

  • Torres AR, Maciulis A, Stubbs EG, Cutler A, Odell D (2002) The transmission disequilibrium test suggests that HLA-DR4 and DR13 are linked to autism spectrum disorder. Hum Immunol 63:311–316

    CAS  PubMed  Google Scholar 

  • Torres AR, Sweeten TL, Cutler A, Bedke BJ, Fillmore M, Stubbs EG, Odell D (2006) The association and linkage of the HLA-A2 class I allele with autism. Hum Immunol 67:346–351

    CAS  PubMed  Google Scholar 

  • Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8:355–367

    CAS  PubMed  Google Scholar 

  • Uddin LQ, Supekar K, Meno V (2013) Reconceptualizing functional brain connectivity in autism from a developmental perspective. Front Human Neurosci 7:1–11

    Google Scholar 

  • Vaishnavi V, Manikandan M, Tiwary BK, Munirajan AK (2013) Insights on the functional impact of microRNAs present in autism-associated copy number variants. PLoS ONE 8:e56781

    PubMed Central  PubMed  Google Scholar 

  • Valiente M, Marín O (2010) Neuronal migration mechanisms in development and disease. Curr Opin Neurobiol 20:68–78

    CAS  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    CAS  PubMed  Google Scholar 

  • Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81

    CAS  PubMed  Google Scholar 

  • Verly M, Verhoeven J, Zink I, Mantini D, Peeters R, Deprez S, Emsell L, Boets B, Noens I, Steyaert J, Lagae L, De CP, Rommel N, Sunaert S (2014a) Altered functional connectivity of the language network in ASD: role of classical language areas and cerebellum. Neuroimage Clin 4:374–82. doi:10.1016/j.nicl.2014.01.008. (eCollection@2014)

    PubMed Central  PubMed  Google Scholar 

  • Verly M, Verhoeven J, Zink I, Mantini D, Van OL, Lagae L, Sunaert S, Rommel N (2014b) Structural and functional underconnectivity as a negative predictor for language in autism. Hum Brain Mapp 35:3602–3615

    PubMed  Google Scholar 

  • Volianskis A, Collingridge GL, Jensen MS (2013) The roles of STP and LTP in synaptic encoding. Peer J 1:e3. doi:10.7717/peerj.3. (Print@2013)

    PubMed Central  PubMed  Google Scholar 

  • Waldman S, Nicholson S, Adilov N (2006) Does television causes autism. National Bureau of Economic Research. 22-8-2014

    Google Scholar 

  • Wass S (2011) Distortions and disconnections: disrupted brain connectivity in autism. Brain Cogn 75:18–28

    PubMed  Google Scholar 

  • Webber AL, Wood J (2005) Amblyopia: prevalence, natural history, functional effects and treatment. Clin Exp Optom 88:365–375

    PubMed  Google Scholar 

  • Wright C, Turner JA, Calhoun VD, Perrone-Bizzozero N (2013) Potential impact of miR-137 and its targets in schizophrenia. Front Genet 4:58. doi:10.3389/fgene.2013.00058. (eCollection@2013)

    PubMed Central  PubMed  Google Scholar 

  • Wu HH, Levitt P (2013) Prenatal expression of MET receptor tyrosine kinase in the fetal mouse dorsal raphe nuclei and the visceral motor/sensory brainstem. Dev Neurosci 35:1–16

    PubMed Central  PubMed  Google Scholar 

  • Xu B, Hsu PK, Karayiorgou M, Gogos JA (2012) MicroRNA dysregulation in neuropsychiatric disorders and cognitive dysfunction. Neurobiol Dis 46:291–301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang P, Lisman JE (2012) Activity-dependent regulation of synaptic strength by PSD-95 in CA1 neurons. J Neurophysiol 107:1058–1066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ziats MN, Rennert OM (2013a) Aberrant expression of long noncoding RNAs in autistic brain. J Mol Neurosci 49:589–593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ziats MN, Rennert OM (2013b) The cerebellum in autism: pathogenic or an anatomical beacon? Cerebellum 12:776–777

    PubMed Central  PubMed  Google Scholar 

  • Zimmerman AW, Jyonouchi H, Comi AM, Connors SL, Milstien S, Varsou A, Heyes MP (2005) Cerebrospinal fluid and serum markers of inflammation in autism. Pediatr Neurol 33:195–201

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Bergado-Rosado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Robinson-Agramonte, M., Gonzàlez Fraguela, M., Bergado-Rosado, J. (2015). Autism, Development and Neural Plasticity. In: Robinson-Agramonte, M. (eds) Translational Approaches to Autism Spectrum Disorder. Springer, Cham. https://doi.org/10.1007/978-3-319-16321-5_7

Download citation

Publish with us

Policies and ethics