Skip to main content

The Hydraulic Architecture of Populus

  • Chapter
Functional and Ecological Xylem Anatomy

Abstract

Populus species are among the fastest-growing temperate trees. Poplar and aspen genotypes are used as a source of fiber, fuel, and shelter. Populus has not only been used as a model for studying wood development, but is also emerging as a model plant for studying xylem and aquaporin function. This chapter discusses general characteristics of poplar xylem. Recent findings on transport efficiency, vulnerability to embolism formation, and phenotypic plasticity are synthesized. The data indicates that growing conditions can have a strong effect on vessel diameters, transport efficiency, and cavitation resistance. In boreal environments, narrow vessels may be advantageous for sustained tree growth. Trembling aspen (Populus tremuloides) has recently shown widespread die-off across many parts of western North America, and mortality has been linked with hydraulic failure of roots and branches. Poplar species and their hybrids vary tremendously in their stomatal sensitivity to water deficits. Even within a species, stomatal behavior may vary depending on the site and growing conditions. Radial exchange of water between phloem, cambium, xylem, and pith is likely facilitated by aquaporins. These water channels could impact various processes including root water uptake and wood development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Almeida-Rodriguez AM, Cooke JEK, Yeh F, Zwiazek JJ (2010) Functional characterization of drought-responsive aquaporins in Populus balsamifera and Populus simonii × balsamifera clones with different drought resistance strategies. Physiol Plant 140:321–333

    CAS  PubMed  Google Scholar 

  • Almeida-Rodriguez AM, Hacke UG (2012) Cellular localization of aquaporin mRNA in hybrid poplar stems. Am J Bot 99:1249–1254

    CAS  PubMed  Google Scholar 

  • Aloni R, Zimmermann MH (1983) The control of vessel size and density along the plant axis. Differentiation 24:203–208

    Google Scholar 

  • Anderegg WRL, Berry JA, Smith DD, Sperry JS, Anderegg LDL, Field CB (2012) The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc Natl Acad Sci U S A 109:233–237

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anderegg WRL, Plavcová L, Anderegg LDL, Hacke UG, Berry JA, Field CB (2013) Drought’s legacy: multi-year hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Glob Chang Biol 19:1188–1196

    PubMed  Google Scholar 

  • Arango-Velez A, Zwiazek JJ, Thomas BR, Tyree MT (2011) Stomatal factors and vulnerability of stem xylem to cavitation in poplars. Physiol Plant 143:154–165

    CAS  PubMed  Google Scholar 

  • Arend M (2008) Immunolocalization of (1, 4)-β-galactan in tension wood fibers of poplar. Tree Physiol 28:1263–1267

    CAS  PubMed  Google Scholar 

  • Arend M, Fromm J (2007) Seasonal change in the drought response of wood cell development in poplar. Tree Physiol 27:985–992

    PubMed  Google Scholar 

  • Awad H, Barigah T, Badel E, Cochard H, Herbette S (2010) Poplar vulnerability to xylem cavitation acclimates to drier soil conditions. Physiol Plant 139:280–288

    CAS  PubMed  Google Scholar 

  • Balatinecz JJ, Kretschmann DE, Leclercq A (2001) Achievements in the utilization of poplar wood-guideposts for the future. Forestry Chronicle 77:265–269

    Google Scholar 

  • Berta M, Giovannelli A, Sebastiani F, Camussi A, Racchi ML (2010) Transcriptome changes in the cambial region of poplar (Populus alba L.) in response to water deficit. Plant Biol 12:341–354

    CAS  PubMed  Google Scholar 

  • Bhaskar R, Valiente-Banuet A, Ackerly DD (2007) Evolution of hydraulic traits in closely related species pairs from mediterranean and nonmediterranean environments of North America. New Phytol 176:718–726

    PubMed  Google Scholar 

  • Blake TJ, Sperry JS, Tschaplinski TJ, Wang SS (1996) Water relations. In: Stettler RF, Bradshaw HD, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC, Ottawa, pp 401–442

    Google Scholar 

  • Bobich EG, Barron-Gafford GA, Rascher KG, Murthy R (2010) Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO2. Tree Physiol 30:866–875

    CAS  PubMed  Google Scholar 

  • Bogeat-Triboulot M-B, Brosché M, Renaut J, Jouve L, Le Thiec D, Fayyaz P, Vinocur B, Witters E, Laukens K, Teichmann T (2007) Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol 143:876–892

    Google Scholar 

  • Bradshaw HD, Ceulemans R, Davis J, Stettler R (2000) Emerging model systems in plant biology: poplar (Populus) as a model forest tree. J Plant Growth Regul 19:306–313

    CAS  Google Scholar 

  • Brodribb TJ, Holbrook NM, Gutierrez MV (2002) Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees. Plant Cell Environ 25:1435–1444

    Google Scholar 

  • Cai J, Tyree MT (2010) The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx. Plant Cell Environ 33:1059–1069

    Google Scholar 

  • Ceulemans R, Impens I, Imler R (1988) Stomatal conductance and stomatal behavior in Populus clones and hybrids. Can J Bot 66:1404–1414

    Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755

    CAS  PubMed  Google Scholar 

  • Cirelli D (2014) Whole-plant transpiration in Populus sp.: its determination, nocturnal effects and influence by form of nitrogen. University of Alberta, Edmonton

    Google Scholar 

  • Coleman HD, Samuels AL, Guy RD, Mansfield SD (2008) Perturbed lignification impacts tree growth in hybrid poplar—a function of sink strength, vascular integrity, and photosynthetic assimilation. Plant Physiol 148:1229–1237

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cooke JEK, Rood SB (2007) Trees of the people: the growing science of poplars in Canada and worldwide. Can J Bot 85:1103–1110

    Google Scholar 

  • DesRochers A, van den Driessche R, Thomas BR (2007) The interaction between nitrogen source, soil pH, and drought in the growth and physiology of three poplar clones. Can J Bot 85:1046–1057

    CAS  Google Scholar 

  • Eckenwalder JE (1996) Systematics and evolution of Populus. In: Stettler RF, Bradshaw JR, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. Part I, Chapter 1. NRC, Ottawa, pp 7–32

    Google Scholar 

  • Escalante-Pérez M, Lautner S, Nehls U, Selle A, Teuber M, Schnitzler J-P, Teichmann T, Fayyaz P, Hartung W, Polle A (2009) Salt stress affects xylem differentiation of grey poplar (Populus × canescens). Planta 229:299–309

    PubMed  Google Scholar 

  • Fichot R, Barigah TS, Chamaillard S, Le Thiec D, Laurans F, Cochard H, Brignolas F (2010) Common trade-offs between xylem resistance to cavitation and other physiological traits do not hold among unrelated Populus deltoides × Populus nigra hybrids. Plant Cell Environ 33:1553–1568

    PubMed  Google Scholar 

  • Fichot R, Laurans F, Monclus R, Moreau A, Pilate G, Brignolas F (2009) Xylem anatomy correlates with gas exchange, water-use efficiency and growth performance under contrasting water regimes: evidence from Populus deltoides × Populus nigra hybrids. Tree Physiol 29:1537–1549

    Google Scholar 

  • Galvez DA, Landhäusser S, Tyree M (2013) Low root reserve accumulation during drought may lead to winter mortality in poplar seedlings. New Phytol 198:139–148

    PubMed  Google Scholar 

  • Galvez DA, Landhäusser SM, Tyree MT (2011) Root carbon reserve dynamics in aspen seedlings: does simulated drought induce reserve limitation? Tree Physiol 31:250–257

    PubMed  Google Scholar 

  • Gleason SM, Butler DW, ZiemiÅ„ska K, Waryszak P, Westoby M (2012) Stem xylem conductivity is key to plant water balance across Australian angiosperm species. Functional Ecol 26:343–352

    Google Scholar 

  • Gomes D, Agasse A, Thiébaud P, Delrot S, Gerós H, Chaumont F (2009) Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta 1788:1213–1228

    CAS  PubMed  Google Scholar 

  • Goue N, Lesage-Descauses MC, Mellerowicz EJ, Magel E, Label P, Sundberg B (2008) Microgenomic analysis reveals cell type-specific gene expression patterns between ray and fusiform initials within the cambial meristem of Populus. New Phytol 180:45–56

    Google Scholar 

  • Groover AT, Nieminen K, Helariutta Y, Mansfield SD (2010) Wood Formation in Populus. In: Jansson S, Bhalerao RP, Groover AT (eds) Genetics and genomics of Populus, vol 8, Plant genetics and genomics: crops and models. Springer, New York, pp 201–224. doi:10.1007/978-1-4419-1541-2_10

    Google Scholar 

  • Gupta AB, Sankararamakrishnan R (2009) Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9:134

    PubMed Central  PubMed  Google Scholar 

  • Hacke U, Sauter JJ (1995) Vulnerability of xylem to embolism in relation to leaf water potential and stomatal conductance in Fagus sylvatica f. purpurea and Populus balsamifera. J Exp Bot 46:1177–1183

    CAS  Google Scholar 

  • Hacke U, Sauter JJ (1996) Drought-induced xylem dysfunction in petioles, branches, and roots of Populus balsamifera L. and Alnus glutinosa (L.) Gaertn. Plant Physiol 111:413–417

    Google Scholar 

  • Hacke UG (2014) Irradiance-induced changes in hydraulic architecture. Botany 92:437–442

    Google Scholar 

  • Hacke UG, Jacobsen AL, Brandon Pratt R, Maurel C, Lachenbruch B, Zwiazek J (2012) New research on plant–water relations examines the molecular, structural, and physiological mechanisms of plant responses to their environment. New Phytol 196:345–348

    CAS  PubMed  Google Scholar 

  • Hacke UG, Plavcová L, Almeida-Rodriguez A, King-Jones S, Zhou W, Cooke JEK (2010) Influence of nitrogen fertilization on xylem traits and aquaporin expression in stems of hybrid poplar. Tree Physiol 30:1016–1025

    CAS  PubMed  Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001a) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Google Scholar 

  • Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701

    PubMed  Google Scholar 

  • Hacke UG, Stiller V, Sperry JS, Pittermann J, McCulloh KA (2001b) Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiol 125:779–786

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hacke UG, Venturas MD, MacKinnon ED, Jacobsen AL, Sperry JS, Pratt RB (2015) The standard centrifuge method accurately measures vulnerability curves of long-vesselled olive stems. New Phytol 205:116–127

    Google Scholar 

  • Hajek P, Leuschner C, Hertel D, Delzon S, Schuldt B (2014) Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus. Tree Physiol 34:744–756

    PubMed  Google Scholar 

  • Harvey HP, van den Driessche R (1997) Nutrition, xylem cavitation and drought resistance in hybrid poplar. Tree Physiol 17:647–654

    PubMed  Google Scholar 

  • Harvey HP, van den Driessche R (1999) Nitrogen and potassium effects on xylem cavitation and water-use efficiency in poplars. Tree Physiol 19:943–950

    PubMed  Google Scholar 

  • Heilman PE, Hinckley TM, Roberts DA, Ceulemans R (1996) Production physiology. In: Stettler RF, Bradshaw HD, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC, Ottawa, pp 459–489

    Google Scholar 

  • Herrera M, Garvin JL (2011) Aquaporins as gas channels. Pflugers Arch 462:623–630

    CAS  PubMed  Google Scholar 

  • Hogg EH, Saugier B, Pontailler J-Y, Black T, Chen W, Hurdle P, Wu A (2000) Responses of trembling aspen and hazelnut to vapor pressure deficit in a boreal deciduous forest. Tree Physiol 20:725–734

    PubMed  Google Scholar 

  • Jacobsen AL, Ewers FW, Pratt RB, Paddock WA, Davis SD (2005) Do xylem fibers affect vessel cavitation resistance? Plant Physiol 139:546–556

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jacobsen AL, Pratt RB, Davis SD, Ewers FW (2007) Cavitation resistance and seasonal hydraulics differ among three arid Californian plant communities. Plant Cell Environ 30:1599–1609

    PubMed  Google Scholar 

  • Jacobsen AL, Pratt RB, Tobin MF, Hacke UG, Ewers FW (2012) A global analysis of xylem vessel length in woody plants. Am J Bot 99:1583–1591

    PubMed  Google Scholar 

  • Jansson S, Douglas CJ (2007) Populus: a model system for plant biology. Annu Rev Plant Biol 58:435–458

    Google Scholar 

  • Jones HG, Sutherland R (1991) Stomatal control of xylem embolism. Plant Cell Environ 14:607–612

    Google Scholar 

  • Junghans U, Langenfeld-Heyser R, Polle A, Teichmann T (2004) Effect of auxin transport inhibitors and ethylene on the wood anatomy of poplar. Plant Biol 6:22–29

    CAS  PubMed  Google Scholar 

  • Junghans U, Polle A, Duchting P, Weiler E, Kuhlman B, Gruber F, Teichmann T (2006) Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environ 29:1519–1531

    CAS  PubMed  Google Scholar 

  • Kim JS, Daniel G (2013) Developmental localization of homogalacturonan and xyloglucan epitopes in pit membranes varies between pit types in two poplar species. Iawa J 34:245–262

    Google Scholar 

  • Kitin P, Voelker SL, Meinzer FC, Beeckman H, Strauss SH, Lachenbruch B (2010) Tyloses and phenolic deposits in xylem vessels impede water transport in low-lignin transgenic poplars: a study by cryo-fluorescence microscopy. Plant Physiol 154:887–898

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koehler L, Ewers FW, Telewski FW (2006) Optimizing for multiple functions: mechanical and structural contributions of cellulose microfibrils and lignin in strengthening tissues. In: Stokke DD, Groom LH (eds) Characterization of the cellulosic cell wall. Blackwell, Ames, pp 20–29

    Google Scholar 

  • Kostiainen K, Saranpaa P, Lundqvist S-O, Kubiske ME, Vapaavuori E (2014) Wood properties of Populus and Betula in long-term exposure to elevated CO2 and O3. Plant Cell Environ 37:1452–1463

    CAS  PubMed  Google Scholar 

  • Laur J, Hacke UG (2013) Transpirational demand affects aquaporin expression in poplar roots. J Exp Bot 64:2283–2293

    PubMed Central  CAS  PubMed  Google Scholar 

  • Laur J, Hacke UG (2014) The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa. PLoS One 9:e111751

    PubMed Central  PubMed  Google Scholar 

  • Lautner S (2013) Wood formation under drought stress and salinity. In: Fromm J (ed) Cellular aspects of wood formation. Springer, Berlin, pp 187–202

    Google Scholar 

  • Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S (2010) Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol 190:709–723

    Google Scholar 

  • Li YY, Sperry JS, Taneda H, Bush SE, Hacke UG (2008) Evaluation of centrifugal methods for measuring xylem cavitation in conifers, diffuse- and ring-porous angiosperms. New Phytologist 177:558–568

    Google Scholar 

  • Lieffers VJ, Landhausser SM, Hogg EH (2001) Is the wide distribution of aspen a result of its stress tolerance? In: Sustaining Aspen in Western landscapes: symposium proceedings, pp. 311–324

    Google Scholar 

  • Lopez D, Bronner G, Brunel N, Auguin D, Bourgerie S, Brignolas F, Carpin S, Tournaire-Roux C, Maurel C, Fumanal B, Martin F, Sakr S, Label P, Julien JL, Gousset-Dupont A, Venisse JS (2012) Insights into Populus XIP aquaporins: evolutionary expansion, protein functionality, and environmental regulation. J Exp Bot 63:2217–2230

    CAS  PubMed  Google Scholar 

  • Luo ZB, Langenfeld-Heyser R, Calfapietra C, Polle A (2005) Influence of free air CO2 enrichment (EUROFACE) and nitrogen fertilisation on the anatomy of juvenile wood of three poplar species after coppicing. Trees-Struct Funct 19:109–118

    Google Scholar 

  • Maherali H, Moura CF, Caldeira MC, Willson CJ, Jackson RB (2006) Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. Plant Cell Environ 29:571–583

    PubMed  Google Scholar 

  • Mansfield SD, Kang KY, Chapple C (2012) Designed for deconstruction—poplar trees altered in cell wall lignification improve the efficacy of bioethanol production. New Phytol 194:91–101

    CAS  PubMed  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    CAS  PubMed  Google Scholar 

  • Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unravelling cell wall formation in the woody dicot stem. Plant Mol Biol 47:239–274

    CAS  PubMed  Google Scholar 

  • Michaelian M, Hogg EH, Hall RJ, Arsenault E (2011) Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest. Global Change Biol 17:2084–2094

    Google Scholar 

  • Nardini A, Lo Gullo MA, Salleo S (2011) Refilling embolized xylem conduits: is it a matter of phloem unloading? Plant Sci 180:604–611

    CAS  PubMed  Google Scholar 

  • Nilsson R, Bernfur K, Gustavsson N, Bygdell J, Wingsle G, Larsson C (2010) Proteomics of plasma membranes from poplar trees reveals tissue distribution of transporters, receptors, and proteins in cell wall formation. Mol Cell Proteom 9:368–387

    CAS  Google Scholar 

  • Norby RJ, Zak DR (2011) Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu Rev Ecol Evol Syst 42:181

    Google Scholar 

  • Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14:265–277

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leplé J-C, Pollet B, Mila I, Webster EA, Marstorp HG (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612

    CAS  PubMed  Google Scholar 

  • Pinno BD, Landhäusser SM, MacKenzie MD, Quideau SA, Chow PS (2012) Trembling aspen seedling establishment, growth and response to fertilization on contrasting soils used in oil sands reclamation. Can J Soil Sci 92:143–151

    CAS  Google Scholar 

  • Pitre FE, Cooke JEK, Mackay JJ (2007) Short-term effects of nitrogen availability on wood formation and fibre properties in hybrid poplar. Trees-Struct Funct 21:249–259

    Google Scholar 

  • Plavcová L, Hacke UG (2011) Heterogeneous distribution of pectin epitopes and calcium in different pit types of four angiosperm species. New Phytol 192:885–897

    PubMed  Google Scholar 

  • Plavcová L, Hacke UG (2012) Phenotypic and developmental plasticity of xylem in hybrid poplar saplings subjected to experimental drought, nitrogen fertilization, and shading. J Exp Bot 63:6481–6491

    PubMed Central  PubMed  Google Scholar 

  • Plavcová L, Hacke UG, Almeida-Rodriguez AM, Li E, Douglas CJ (2013) Gene expression patterns underlying changes in xylem structure and function in response to increased nitrogen availability in hybrid poplar. Plant Cell Environ 36:186–199

    PubMed  Google Scholar 

  • Plavcová L, Hacke UG, Sperry JS (2011) Linking irradiance-induced changes in pit membrane ultrastructure with xylem vulnerability to cavitation. Plant Cell Environ 34:501–513

    PubMed  Google Scholar 

  • Pockman WT, Sperry JS (2000) Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. Am J Bot 87:1287–1299

    CAS  PubMed  Google Scholar 

  • Pratt RB, Jacobsen AL, Ewers FW, Davis SD (2007) Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol 174:787–798

    CAS  PubMed  Google Scholar 

  • Pregitzer KS, Friend AL (1996) The structure and function of Populus root systems. Biology of Populus and its implications for management and conservation. NRC, Ottawa, pp 331–354

    Google Scholar 

  • Rood SB, Braatne JH, Hughes FMR (2003) Ecophysiology of riparian cottonwoods: stream flow dependency, water relations and restoration. Tree Physiol 23:1113–1124

    PubMed  Google Scholar 

  • Rood SB, Patino S, Coombs K, Tyree MT (2000) Branch sacrifice: cavitation-associated drought adaptation of riparian cottonwoods. Trees 14:248–257

    Google Scholar 

  • Sakr S, Alves G, Morillon RL, Maurel K, Decourteix M, Guilliot A, Fleurat-Lessard P, Julien JL, Chrispeels MJ (2003) Plasma membrane aquaporins are involved in winter embolism recovery in walnut tree. Plant Physiol 133:630–641

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sauter JJ, Iten W, Zimmermann MH (1973) Studies on the release of sugar into the vessels of sugar maple (Acer saccharum). Can J Bot 51:1–8

    CAS  Google Scholar 

  • Sauter JJ, Kloth S (1986) Plasmodesmatal frequency and radial translocation rates in ray cells of poplar (Populus × canadensis Moench ‘robusta’). Planta 168:377–380

    CAS  PubMed  Google Scholar 

  • Schrader J, Nilsson J, Mellerowicz E, Berglund A, Nilsson P, Hertzberg M, Sandberg G (2004) A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell 16:2278–2292

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schreiber S, Hacke UG, Hamann A (in press) Variation of xylem vessel diameters across a climate gradient: insight from a reciprocal transplant experiment with a widespread boreal tree. Funct Ecol. doi:10.1111/1365-2435.12455

  • Schreiber SG, Hacke UG, Hamann A, Thomas BR (2011) Genetic variation of hydraulic and wood anatomical traits in hybrid poplar and trembling aspen. New Phytol 190:150–160

    PubMed  Google Scholar 

  • Schreiber SG, Hamann A, Hacke UG, Thomas BR (2013) Sixteen years of winter stress: an assessment of cold hardiness, growth performance and survival of hybrid poplar clones at a boreal planting site. Plant Cell Environ 36:419–428

    PubMed  Google Scholar 

  • Schulte P, Hinckley T (1987) The relationship between guard cell water potential and the aperture of stomata in Populus. Plant Cell Environ 10:313–318

    Google Scholar 

  • Schulte P, Hinckley T, Stettler R (1987) Stomatal responses of Populus to leaf water potential. Can J Bot 65:255–260

    Google Scholar 

  • Secchi F, Gilbert ME, Zwieniecki MA (2011) Transcriptome response to embolism formation in stems of Populus trichocarpa provides insight into signaling and the biology of refilling. Plant Physiol 157:1419–1429

    PubMed Central  CAS  PubMed  Google Scholar 

  • Secchi F, Maciver B, Zeidel ML, Zwieniecki MA (2009) Functional analysis of putative genes encoding the PIP2 water channel subfamily in Populus trichocarpa. Tree Physiol 29:1467–1477

    CAS  PubMed  Google Scholar 

  • Secchi F, Zwieniecki MA (2010) Patterns of PIP gene expression in Populus trichocarpa during recovery from xylem embolism suggest a major role for the PIP1 aquaporin subfamily as moderators of refilling process. Plant Cell Environ 33:1285–1297

    CAS  PubMed  Google Scholar 

  • Secchi F, Zwieniecki MA (2011) Sensing embolism in xylem vessels: the role of sucrose as a trigger for refilling. Plant Cell Environ 34:514–524

    CAS  PubMed  Google Scholar 

  • Secchi F, Zwieniecki MA (2013) The physiological response of Populus tremula × alba leaves to the down-regulation of PIP1 aquaporin gene expression under no water stress. Front Plant Sci 4:507

    PubMed Central  PubMed  Google Scholar 

  • Shatil-Cohen A, Attia Z, Moshelion M (2011) Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA? Plant J 67:72–80

    CAS  PubMed  Google Scholar 

  • Siemens JA, Zwiazek JJ (2004) Changes in root water flow properties of solution culture-grown trembling aspen (Populus tremuloides) seedlings under different intensities of water-deficit stress. Physiol Planta 121:44–49

    CAS  Google Scholar 

  • Silim S, Nash R, Reynard D, White B, Schroeder W (2009) Leaf gas exchange and water potential responses to drought in nine poplar (Populus spp.) clones with contrasting drought tolerance. Trees-Struct Funct 23:959–969

    Google Scholar 

  • Song DL, Xi W, Shen JH, Bi T, Li LG (2011) Characterization of the plasma membrane proteins and receptor-like kinases associated with secondary vascular differentiation in poplar. Plant Mol Biol 76:97–115

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sparks JP, Black RA (1999) Regulation of water loss in populations of Populus trichocarpa: the role of stomatal control in preventing xylem cavitation. Tree Physiol 19:453–459

    Google Scholar 

  • Sperry JS (2003) Evolution of water transport and xylem structure. Int J Plant Sci 164:S115–S127

    Google Scholar 

  • Sperry JS, Donnelly JR, Tyree MT (1988) A method for measuring hydraulic conductivity and embolism in xylem. Plant Cell Environ 11:35–40

    Google Scholar 

  • Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93:1490–1500

    PubMed  Google Scholar 

  • Sperry JS, Nichols KL, Sullivan JEM, Eastlack SE (1994) Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology 75:1736–1752

    Google Scholar 

  • Spicer R, Groover A (2010) Evolution of development of vascular cambia and secondary growth. New Phytol 186:577–592

    CAS  PubMed  Google Scholar 

  • Stromberg J (2013) Root patterns and hydrogeomorphic niches of riparian plants in the American Southwest. J Arid Environ 94:1–9

    Google Scholar 

  • Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 49:419–432

    Google Scholar 

  • Telewski F, Aloni R, Sauter J (1996) Physiology of secondary tissues of Populus. In: Stettler RF, Bradshaw HD, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC, Ottawa, pp 301–329

    Google Scholar 

  • Tricker PJ, Pecchiari M, Bunn SM, Vaccari FP, Peressotti A, Miglietta F, Taylor G (2009) Water use of a bioenergy plantation increases in a future high CO2 world. Biomass Bioenergy 33:200–208

    Google Scholar 

  • Tyree MT, Ewers FW (1991) Tansley review no. 34: the hydraulic architecture of trees and other woody plants. New Phytol 119:345–360

    Google Scholar 

  • Tyree MT, Kolb KJ, Rood SB, Patino S (1994) Vulnerability to drought-induced cavitation of riparian cottonwoods in Alberta: a possible factor in the decline of the ecosystem? Tree Physiol 14:455–466

    PubMed  Google Scholar 

  • Tyree MT, Sperry JS (1988) Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model. Plant Physiol 88:574–580

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap, 2nd edn. Springer, Berlin

    Google Scholar 

  • Uddling J, Teclaw RM, Kubiske ME, Pregitzer KS, Ellsworth DS (2008) Sap flux in pure aspen and mixed aspen–birch forests exposed to elevated concentrations of carbon dioxide and ozone. Tree Physiol 28:1231–1243

    CAS  PubMed  Google Scholar 

  • Verkman A (2012) Aquaporins in clinical medicine. Annu Rev Med 63:303

    PubMed Central  CAS  PubMed  Google Scholar 

  • Voelker SL, Lachenbruch B, Meinzer FC, Kitin P, Strauss SH (2011) Transgenic poplars with reduced lignin show impaired xylem conductivity, growth efficiency and survival. Plant Cell Environ 34:655–668

    PubMed  Google Scholar 

  • Wan XC, Landhausser SM, Zwiazek JJ, Lieffers VJ (1999) Root water flow and growth of aspen (Populus tremuloides) at low root temperatures. Tree Physiol 19:879–884

    Google Scholar 

  • Woodrum CL, Ewers FW, Telewski FW (2003) Hydraulic, biomechanical, and anatomical interactions of xylem from five species of Acer (Aceraceae). Am J Bot 90:693–699

    PubMed  Google Scholar 

  • Worrall JJ, Marchetti SB, Egeland L, Mask RA, Eager T, Howell B (2010) Effects and etiology of sudden aspen decline in southwestern Colorado, USA. Forest Ecol Manag 260:638–648

    Google Scholar 

  • Worrall JJ, Rehfeldt GE, Hamann A, Hogg EH, Marchetti SB, Michaelian M, Gray LK (2013) Recent declines of Populus tremuloides in North America linked to climate. Forest Ecol Manag 299:35–51

    Google Scholar 

  • Zhong R, Ye Z-H (2013) Transcriptional regulation of wood formation in tree species. In: Fromm J (ed) Cellular aspects of wood formation. Springer, Heidelberg, pp 141–158

    Google Scholar 

  • Zhong RQ, McCarthy RL, Lee C, Ye ZH (2011) Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar. Plant Physiol 157:1452–1468

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in my laboratory was supported by grants from the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, and by the Canada Research Chair program. Thanks to current and previous members of the Hacke lab who contributed data to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe G. Hacke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hacke, U.G. (2015). The Hydraulic Architecture of Populus . In: Hacke, U. (eds) Functional and Ecological Xylem Anatomy. Springer, Cham. https://doi.org/10.1007/978-3-319-15783-2_4

Download citation

Publish with us

Policies and ethics