Skip to main content

Challenges in Molecular Dynamics Simulations of Multicomponent Oxide Glasses

  • Chapter
  • First Online:
Molecular Dynamics Simulations of Disordered Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 215))

Abstract

Despite tremendous progresses made in the past few decades in molecular dynamics simulations of glass and related materials, there exist a number of challenges in MD simulations of multicomponent glasses. This chapter summarizes the progresses in this field and present the challenges that include the reliable and transferable empirical potentials, cooling rate, system size and concentration effect on the simulated glass structures, and the validating structures of multicomponent oxide systems. Several practical examples on multicomponent and technologically important glass systems using classical MD simulations are also given to highlight the capabilities and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.V. Woodcock, C.A. Angell, P. Cheeseman, Molecular dynamics studies of the vitreous state: simple ionic systems and silica. J. Chem. Phys. 65, 1565 (1976)

    Article  Google Scholar 

  2. C. Huang, A.N. Cormack, Computer simulation studies of the structure and transport properties of alkali silicate glasses. Physics of Non-Crystalline Solids (Taylor & Francis, Cambridge, 1992), pp. 31–35

    Google Scholar 

  3. T.F. Soules, A.K. Varshneya, Molecular dynamic calculations of a sodium borosilicate glass structure. J. Am. Ceram. Soc. 64, 145–150 (1981)

    Article  Google Scholar 

  4. A.C. Wright, Neutron scattering from vitreous silica. V. The structure of vitreous silica: what have we learned from 60 years of diffraction studies? J. Non-Cryst. Solids 179, 84–115 (1994)

    Article  Google Scholar 

  5. J.F. Stebbins, Effects of temperature and composition on silicate glass structure and dynamics: SI-29 NMR results. J. Non-Cryst. Solids 106, 359–369 (1988)

    Article  Google Scholar 

  6. G.N. Greaves, EXAFS and the structure of glass. J. Non-Cryst. Solids 71, 203–217 (1985)

    Article  Google Scholar 

  7. S. Gin, J.V. Ryan, D.K. Schreiber, J. Neeway, M. Cabie, Contribution of atom-probe tomography to a better understanding of glass alteration mechanisms: application to a nuclear glass specimen altered 25 years in a granitic environment (2013)

    Google Scholar 

  8. Y. Xiang, J. Du, Effect of strontium substitution on the structure of 45S5 bioglasses. Chem. Mater. 23, 2703–2717 (2011)

    Article  Google Scholar 

  9. J.C. Mauro, C.S. Philip, D.J. Vaughn, M.S. Pambianchi, Glass science in the United States: current status and future directions. Int. J. Appl. glass Sci. 5, 2–15 (2014)

    Article  Google Scholar 

  10. M.P. Alan, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1989)

    Google Scholar 

  11. A.N. Cormack, J. Du, T.R. Zeitler, Alkali ion migration mechanisms in silicate glasses probed by molecular dynamics simulations, in 79th International Bunsen Discussion Meeting, The Royal Society of Chemistry, UK, vol. 4, pp. 3193–3197 (2002)

    Google Scholar 

  12. A.N. Cormack, J. Du, T.R. Zeitler, Sodium ion migration mechanisms in silicate glasses probed by molecular dynamics simulations. J. Non-Cryst. Solids 323, 147–154 (2003)

    Article  Google Scholar 

  13. J. Du, A.N. Cormack, The medium range structure of sodium silicate glasses: a molecular dynamics simulation. J. Non-Cryst. Solids 349, 66–79 (2004)

    Article  Google Scholar 

  14. J. Du, A.N. Cormack, Molecular dynamics simulation of the structure and hydroxylation of silica glass surfaces. J. Am. Ceram. Soc. 88, 2532–2539 (2005)

    Article  Google Scholar 

  15. J. Du, A.N. Cormack, The structure of erbium doped sodium silicate glasses. J. Non-Cryst. Solids 351, 2263–2276 (2005)

    Article  Google Scholar 

  16. J. Du, L.R. Corrales, Compositional dependence of the first sharp diffraction peaks in alkali silicate glasses: a molecular dynamics study. J. Non-Cryst. Solids 352, 3255–3269 (2006)

    Article  Google Scholar 

  17. J. Du, L. Rene Corrales, Understanding lanthanum aluminate glass structure by correlating molecular dynamics simulation results with neutron and X-ray scattering data. J. Non-Cryst. Solids 353, 210–214 (2007)

    Article  Google Scholar 

  18. J. Du, Molecular dynamics simulations of the structure and properties of low silica yttrium aluminosilicate glasses. J. Am. Ceram. Soc. 92, 87–95 (2009)

    Article  Google Scholar 

  19. J. Du, L. Kokou, Europium environment and clustering in europium doped silica and sodium silicate glasses. J. Non-Cryst. Solids 357, 2235–2240 (2011)

    Article  Google Scholar 

  20. J. Du, L. Kokou, J.L. Rygel, Y. Chen, C.G. Pantano, R. Woodman, J. Belcher, Structure of cerium phosphate glasses: molecular dynamics simulation. J. Am. Ceram. Soc. 94, 2393–2401 (2011)

    Article  Google Scholar 

  21. J. Du, Y. Xiang, Effect of strontium substitution on the structure, ionic diffusion and dynamic properties of 45S5 bioactive glasses. J. Non-Cryst. Solids 358, 1059–1071 (2012)

    Article  Google Scholar 

  22. L.R. Corrales, J. Du, Compositional dependence of the first sharp diffraction peaks in alkali silicate glasses: a molecular dynamics study. J. Non-Cryst. Solids 352, 3255–3269 (2006)

    Article  Google Scholar 

  23. J. Du, R. Devanathan, L.R. Corrales, W.J. Weber, A.N. Cormack, Short- and medium-range structure of amorphous zircon from molecular dynamics simulations. Phys. Rev. B (Condens. Matter Mater. Phys.) 74, 214204-1 (2006)

    Google Scholar 

  24. J. Du, Molecular dynamics simulations of the structure of silicate glasses containing hydroxyl groups and rare earth ions, Ph.D. Dissertation, Alfred University, 2004

    Google Scholar 

  25. A. Pedone, G. Malavasi, M.C. Menziani, A.N. Cormack, U. Segre, A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses. J. Phys. Chem. B 110, 11780–11795 (2006)

    Article  Google Scholar 

  26. Y. Xiang, J. Du, M.M. Smedskjaer, J.C. Mauro, Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations. J. Chem. Phys. 139, 079904 (2013)

    Article  Google Scholar 

  27. A. Pedone, G. Malavasi, M.C. Menziani, Computational insight into the effect of CaO/MgO substitution on the structural properties of phospho-silicate bioactive glasses. J. Phys. Chem. C 113, 15723–15730 (2009)

    Article  Google Scholar 

  28. A. Pedone, G. Malavasi, A.N. Cormack, U. Segre, M.A. Menziani, Elastic and dynamical properties of alkali-silicate glasses from computer simulations techniques. Theor. Chem. Acc. 120, 557–564 (2008)

    Article  Google Scholar 

  29. B. Guillot, N. Sator, A computer simulation study of natural silicate melts. Part I: Low pressure properties. Geochim. Cosmochim. Acta 71, 1249–1265 (2007)

    Article  Google Scholar 

  30. B. Guillot, N. Sator, A computer simulation study of natural silicate melts. Part II: High pressure properties. Geochim. Cosmochim. Acta 71, 4538–4556 (2007)

    Article  Google Scholar 

  31. P.J. Bray, J.G. O’Keefe, NMR investigation of the structure of alkali borate glasses. Phys. Chem. Glasses 4, 37–46 (1963)

    Google Scholar 

  32. J. Zhong, P.J. Bray, Change in boron coordination in alkali borate glasses, and mixed alkali effects, as elucidated by NMR. J. Non-Cryst. Solids 111, 67–76 (1989)

    Article  Google Scholar 

  33. R.E. Youngman, J.W. Zwanziger, Multiple boron sites in borate glass detected with dynamic angle spinning nuclear magnetic resonance. J. Non-Cryst. Solids 168, 293–297 (1994)

    Article  Google Scholar 

  34. A.N. Cormack, B. Park, Molecular dynamics simulations of borate glasses. Phys. Chem. Glasses 41, 272–277 (2000)

    Google Scholar 

  35. L. Huang, J. Nicholas, J. Kieffer, J. Bass, Polyamorphic transitions in vitreous B2O3 under pressure. J. Phys. Condens. Matter 20, 075107 (2008)

    Google Scholar 

  36. Le-Hai Kieu, J. Delaye, L. Cormier, C. Stolz, Development of empirical potentials for sodium borosilicate glass systems. J. Non-Cryst. Solids 357, 3313–3321 (2011)

    Article  Google Scholar 

  37. H. Inoue, A. Masuno, Y. Watanabe, Modeling of the structure of sodium borosilicate glasses using pair potentials. J. Phys. Chem. B 116, 12325–12331 (2012)

    Article  Google Scholar 

  38. A.C.T. van Duin, B.V. Merinov, S.J. Seung, W.A. Goddard III, ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia. J. Phys. Chem. A 112, 3133–3140 (2008)

    Article  Google Scholar 

  39. T. Liang, T. Shan, Y. Cheng, B.D. Devine, M. Noordhoek, Y. Li, Z. Lu, S.R. Phillpot, S.B. Sinnott, Classical atomistic simulations of surfaces and heterogeneous interfaces with the charge-optimized many body (COMB) potentials. Mater. Sci. Eng. R: Rep. 74, 255–279 (2013)

    Article  Google Scholar 

  40. A. Tilocca, N.H. de Leeuw, A.N. Cormack, Shell-model molecular dynamics calculations of modified silicate glasses. Phys. Rev. B (Condens. Matter Mater. Phys.) 73, 104209-1 (2006)

    Google Scholar 

  41. A. Tilloca, Short- and medium-range structure of multicomponent bioactive glasses and melts: an assessment of the performances of shell-model and rigid-ion potentials. J. Chem. Phys. 129, 084504 (2008)

    Article  Google Scholar 

  42. J. Du, L.R. Corrales, Structure, dynamics, and electronic properties of lithium disilicate melt and glass. J. Chem. Phys. 125, 114702 (2006)

    Google Scholar 

  43. A. Tilocca, N.H. De Leeuw, Ab initio molecular dynamics study of 45S5 bioactive silicate glass. J. Phys. Chem. B 110, 25810–25816 (2006)

    Article  Google Scholar 

  44. L.R. Corrales, J. Du, Thermal kinetics of glass simulations. Phys. Chem. Glasses 46, 420–424 (2005)

    Google Scholar 

  45. A. Tilocca, Cooling rate and size effects on the medium-range structure of multicomponent oxide glasses simulated by molecular dynamics. J. Chem. Phys. 139, 114501 (12 pp) (2013)

    Google Scholar 

  46. A. Tandia, K.D. Vargheese, J.C. Mauro, Elasticity of ion stuffing in chemically strengthened glass. J. Non-Cryst. Solids 358, 1569–1574 (2012)

    Article  Google Scholar 

  47. M.I. Baskes, Modified embedded atom method, in Proceedings of the 1994 International Mechanical Engineering Congress and Exposition, 6–11 Nov 1994, vol. 42 (ASME, Chicago, 1994), pp. 23–35

    Google Scholar 

  48. L. Kokou, J. Du, Rare earth ion clustering behavior in europium doped silicate glasses: simulation size and glass structure effect. J. Non-Cryst. Solids 358, 3408–3417 (2012)

    Google Scholar 

  49. J. Du, A.N. Cormack, Structure study of rare earth doped vitreous silica by molecular dynamics simulation. Radiat. Eff. Defects Solids 157, 789–794 (2002)

    Article  Google Scholar 

  50. A. Wright, The comparison of molecular dynamics simulations with diffraction experiments. J. Non-Cryst. Solids, 159, 264–268 (1993)

    Google Scholar 

  51. A.C. Wright, Neutron and X-ray diffraction. J. Non-Cryst. Solids 106(1–3), 1–16 (1988)

    Article  Google Scholar 

  52. A.C. Wright, Neutron diffraction and X-ray amorphography, in Experimental Techniques of Glass Science, ed. by C.J. Simmons, O.H. El-Bayoumi (American Ceramic Society, Westerville, 1993)

    Google Scholar 

  53. J. Du, L.R. Corrales, Understanding lanthanum aluminate glass structure by correlating molecular dynamics simulation results with neutron and X-ray scattering data. J. Non-Cryst. Solids 353, 210–214 (2007)

    Google Scholar 

  54. A. Pedone, T. Charpentier, G. Malavasi, M.C. Menziani, New insights into the atomic structure of 45S5 bioglass by means of solid-state NMR spectroscopy and accurate first-principles simulations. Chem. Mater. 22, 5644–5652 (2010)

    Article  Google Scholar 

  55. C. Bonhomme, C. Gervais, N. Folliet, F. Pourpoint, C.C. Diogo, J. Lao, E. Jallot, J. Lacroix, J.-M. Nedelec, D. Iuga, J.V. Hanna, M.E. Smith, Y. Xiang, J. Du, D. Laurencin, 87Sr solid-state NMR as a structurally sensitive tool for the investigation of materials: antiosteoporotic pharmaceuticals and bioactive glasses. J. Am. Chem. Soc. 134, 12611–12628 (2012)

    Article  Google Scholar 

  56. T. Charpentier, M.C. Menziani, A. Pedone, Computational simulations of solid state NMR spectra: a new era in structure determination of oxide glasses. RSC Adv. 3, 10550–10578 (2013)

    Article  Google Scholar 

  57. A.N. Cormack, J. Du, Molecular dynamics simulations of soda-lime-silicate glasses. J. Non-Cryst. Solids 293–295, 283–289 (2001)

    Google Scholar 

  58. B.W.H. van Beest, G.J. Kramer, R.A. van Santen, Force fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 64, 1955–1958 (1990)

    Article  Google Scholar 

  59. A. Pedone, G. Malavasi, A.N. Cormack, U. Segre, M.C. Menziani, Elastic and dynamical properties of alkali-silicate glasses from computer simulations techniques. Theor. Chem. Acc. 120, 557–564 (2008)

    Article  Google Scholar 

  60. Y. Xiang, J. Du, L.B. Skinner, C.J. Benmore, A.W. Wren, D.J. Boyd, M.R. Towler, Structure and diffusion of ZnO-SrO-CaO-Na\(_{2}\)O-SiO\(_{2}\) bioactive glasses: a combined high energy X-ray diffraction and molecular dynamics simulations study. RSC Adv. 3, 5966–5978 (2013)

    Article  Google Scholar 

  61. L.R. Corrales, J. Du, Characterization of Ion Distributions Near the Surface of Sodium-Containing and Sodium-Depleted Calcium Aluminosilicate Melts (Blackwell Publishing Inc, Beijing, 2006), pp. 36–41

    Google Scholar 

  62. J. Liang, R.T. Cygan, T.M. Alam, Molecular dynamics simulation of the structure and properties of lithium phosphate glasses. J. Non-Cryst. Solids 263–264, 167–179 (2000)

    Google Scholar 

  63. G. Mountjoy, Molecular dynamics, diffraction and EXAFS of rare earth phosphate glasses compared with predictions based on bond valence. J. Non-Cryst. Solids 353, 2029–2034 (2007)

    Article  Google Scholar 

  64. L.L. Hench, Bioceramics, a clinical success. Am. Ceram. Soc. Bull. 77, 67–74 (1998)

    Google Scholar 

  65. T.R. Zeitler, A.N. Cormack, Interaction of water with bioactive glass surfaces. J. Cryst. Growth 294, 96 (2006)

    Article  Google Scholar 

  66. A. Tilocca, A.N. Cormack, N.H. de Leeuw, The structure of bioactive silicate glasses: new insight from molecular dynamics simulations. Chem. Mater. 19, 95–103 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges funding support of the NSF GOALI project through the Ceramic Program (project # 1105219) and the DOE NEUP project (project # DE-NE0000748).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jincheng Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Du, J. (2015). Challenges in Molecular Dynamics Simulations of Multicomponent Oxide Glasses. In: Massobrio, C., Du, J., Bernasconi, M., Salmon, P. (eds) Molecular Dynamics Simulations of Disordered Materials. Springer Series in Materials Science, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-15675-0_7

Download citation

Publish with us

Policies and ethics