Skip to main content

Safer Nanoformulation for the Next Decade

  • Chapter
Green Processes for Nanotechnology

Abstract

Nanotechnology is one of the exciting, albeit infrequent, technological change that can influence all industries. It holds the potential for pervasive and revolutionary changes. These changes can either follow a path leading to waste, pollution and energy inefficiency or follow a path of green nanotechnology to a more sustainable future. It is our choice while the window of opportunity still remains open. Green nanotechnology offers the opportunity to head off adverse effects before they occur. It can proactively influence the design of nanomaterials or products by eliminating or minimizing pollution from the production of the nanomaterials, taking a life cycle approach to nanoproducts to estimate and mitigate where environmental impact might occur in the product chain, designing toxicity out of nanomaterials and using nanomaterial to remediate existing environmental problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AgNP:

Silver nanoparticle

AuNP:

Gold nanoparticle

DRAM:

Dynamic random access memory

ENM:

Engineered nanomaterial

HF:

Hydrogen fluoride

HTS:

High throughput screening

IGC:

Inert gas condensation

LDH:

Lactate dehydrogenase

MNP:

Magnetic nanoparticle

MTS:

3-(4,5 Dimethylthiazol-2yl)-5-(3-carbonymethyl-2-(4sulphonyl)-2H-tetrazolium salt

MTT:

3-(4,5 Dimethylthiazol-2yl)-2,5 diphenyltetrazolium bromide

QNTR:

Quantitative nanostructure toxicity relationship

QSAR:

Quantitative structure-activity relationship

REACH:

Registration evaluation and authorization of chemicals

Sb2O3 :

Antimony trioxide

SRAM:

Selective random access memory

SRM:

Standard reference nanomaterials

TiO2 :

Titanium dioxide

References

  1. Brundtland G (1987) Our common future: report of the world commission on environment and development. Oxford University Press, Oxford

    Google Scholar 

  2. Gallopoulos NE (2006) Industrial ecology: an overview. Progr Ind Ecol 3(1–2):10–27

    Article  Google Scholar 

  3. Eric Drexler K (1986) Engines of creation. Random House Inc, New York

    Google Scholar 

  4. Binnig G, Rohrer H, Gerber C, Weibel E (1983) 7 × 7 reconstruction on Si(111) resolved in real space. Phys Rev Lett 50:120–123

    Article  Google Scholar 

  5. Maynard AD, Warheit DB, Philbert MA (2011) The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci 120:109–129

    Article  Google Scholar 

  6. Stamm H (2011) Risk factors: nanomaterials should be defined. Nature 476:399

    Article  Google Scholar 

  7. Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786

    Article  Google Scholar 

  8. Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, Zhang H (2012) Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res doi:10.1021.ar300022

  9. Shvedova AA, Kagan VE, Fadeel B (2010) Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu Rev Pharmacol Toxicol 50:63–88

    Article  Google Scholar 

  10. Hartung T (2009) Lessons learned from alternative methods and their validation for a new toxicology in the 21st century. J Toxicol Environ Health B Crit Rev 13(2–4):277–290

    Google Scholar 

  11. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H, ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 6:2–8

    Google Scholar 

  12. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  Google Scholar 

  13. Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Part fibre. Toxicology 2:8

    Google Scholar 

  14. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  Google Scholar 

  15. Xia T, Li N, Nel AE (2009) Annu Rev Public Health

    Google Scholar 

  16. Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessi F, Castranova V, Thompson M (2009) Nat Mater 8:543–557

    Article  Google Scholar 

  17. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Nano Lett 6:1794–1807

    Article  Google Scholar 

  18. George S, Pokhrel S, Xia T, Gilbert B, Ji Z, Schowalter M, Rosenauer A, Damoiseaux R, Bradley KA, Madler L, Nel AE (2010) ACS Nano 4:15–29

    Article  Google Scholar 

  19. Li N, Xia T, Nel AE (2008) Free Radic Biol Med 44:1689–1699

    Article  Google Scholar 

  20. Winkler DA, Mombelli E, Pietroiusti A (2013) Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential. Toxicol 313:15–23

    Article  Google Scholar 

  21. Puzyn T, Rasulev B, Gajewicz A (2011) Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol 6(3):175–178

    Article  Google Scholar 

  22. Epa VC, Burden FR, Tassa C, Weissleder R, Shaw S, Winkler DA (2012) Modelling biological activities of nanoparticles. Nano Lett 12:5808–5812

    Article  Google Scholar 

  23. Le TC, Epa VC, Burden FR, Winkler DA (2012) Quantitative structure-property relationship modelling of diverse materials properties. Chem Rev 112:2889–2919

    Article  Google Scholar 

  24. Fourches D, Pu D, Tassa C (2010) Quantitative nanostructure—activity relationship modeling. ACS Nano 4(10):5703–5712

    Article  Google Scholar 

  25. Eric W, Ayers R, Heller M (2002) The 1.7 kilogram microchip: energy and material use in the production of semiconductor devices. Environ Sci Technol 36:5504–5510

    Article  Google Scholar 

  26. Reuters (2007) HP claims advance in semiconductor nanotechnology reuters

    Google Scholar 

  27. Shadman F (2006) Environmental challenges and opportunities in nano-manufacturing. Paper presented at the green nanotechnology event hosted by the project on emerging nanotechnologies at the Woodrow Wilson International Center for Scholars 26 Apr 2006

    Google Scholar 

  28. Anastas P, Warner J (1998) Green chemistry theory and practice. Oxford University Press, New York

    Google Scholar 

  29. McKenzie LC, Hutchison JE (2004) Green nanoscience: an integrated approach to greener products, processes, and applications. Chem Today 22:30–32

    Google Scholar 

  30. Hasobe T, Imahori H, Fukuzumi S, Kamat PV (2003) Light energy conversion using mixed molecular nanoclusters. Porphyrin and C60 cluster films for efficient photocurrent generation. J Phys Chem B 107:12105–12112

    Article  Google Scholar 

  31. Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn R (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597–602

    Article  Google Scholar 

  32. Lloyd SM, Lave LR (2003) Life cycle economic and environmental implications of using nanocomposites in automobiles. Environ Sci Tech 37:3458–3466

    Article  Google Scholar 

  33. Hahm JL, Lieber CM (2004) Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 4:5154

    Article  Google Scholar 

  34. Dahl JA, Maddux BLS, Hutchinson JE (2007) Towards greener nanosynthesis. Chem Rev 107:2228–2269

    Article  Google Scholar 

  35. Chithrani RD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Article  Google Scholar 

  36. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  Google Scholar 

  37. Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forro L (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125

    Article  Google Scholar 

  38. Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–432

    Article  Google Scholar 

  39. Pernodet N, Fang X, Sun Y, Bakhtina A, Ramakrishnan A, Sokolov J, Ulman A, Rafailovich M (2006) Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2:766–773

    Article  Google Scholar 

  40. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  Google Scholar 

  41. Hurt RH, Monthioux M, Kane A (2006) Toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue. Carbon 44:1028–1033

    Article  Google Scholar 

  42. Wiesner MR, Charackli GW (1998) Metals and colloids in urban runoff. In: Brejchova D (eds) Ann Arbor Press, Chelsea, MI

    Google Scholar 

  43. Weare WW, Reed SM, Hutchison JE, Warner MG (2000) Improved synthesis of small (dCORE″, 1.5 nm) phosphine-stabilized gold nanoparticles. J Am Chem Soc 122:12890–12891

    Article  Google Scholar 

  44. Oberdorster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062

    Article  Google Scholar 

  45. Mafuné F, Kohno J, Takeda Y, Kondow T (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105:225114–225120

    Google Scholar 

  46. Raffi M, Rumaiz AK, Hasan MM, Shah SI (2007) Studies of the growth parameters for silver nanoparticle synthesis by inert gas condensation. J Mater Res 22:3378–3384

    Article  Google Scholar 

  47. Rosemary MJ, Pradeep T (2003) Solvothermal synthesis of silver nanoparticles from thiolates. J Colloid Interface Sci 268:81–84

    Article  Google Scholar 

  48. Chaki NK, Sundrik SG, Sonawane HR, Vijayamohanan KJ (2002) Chem Soc Chem Commun 76

    Google Scholar 

  49. Shukla S, Seal S (1999) Cluster size effect observed for gold nanoparticles synthesized by sol-gel technique as studied by X-ray photoelectron spectroscopy. Nano Struct Mater 11:1181–1193

    Article  Google Scholar 

  50. Gleiter H (1989) Nan crystalline materials. Progr Mater Sci 33:223–315

    Article  Google Scholar 

  51. Pérez-Tijerina E, Gracia-Pinilla MA, Mejía-Rosales S, Ortiz-Méndez U, Torres A, José-Yacamán M (2008) Highly size-controlled synthesis of Au/Pd nanoparticles by inert-gas condensation. Faraday Discuss 138:353–362

    Article  Google Scholar 

  52. Kang S, Kang MH, Lee E, Seo S, AhnFacile CWH (2011) Hetero-sized nanocluster array fabrication for investigating the nanostructure-dependence of nonvolatile memory characteristics. Nanotechnology 22:254018. doi:10.1088/0957-4484/22/25/254018

    Article  Google Scholar 

  53. Gacoin T, Malier L, Boilot JP (1997) Sol–gel transition in CdS colloids. Chem Mater 9:1502

    Article  Google Scholar 

  54. Yuan Y, Fendler J, Cabasso I (1992) Preparation and characterization of stable aqueous higher-order fullerenes. Chem Mater 4:312

    Article  Google Scholar 

  55. Sankaran V, Yue J, Cahen RE, Schrock RR, Silbey RJ (1993) Advanced drug delivery advices. Chem Mater 5:1133

    Article  Google Scholar 

  56. Olshavsky MA, Allcock HR (1997) Small scale system for in-vivo drug delivery. Chem Mater 9:1367

    Article  Google Scholar 

  57. Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z (2007) Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl Catal B 69:138–144

    Article  Google Scholar 

  58. Yang HG, Sun CH, Qiao SH, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:638–641

    Article  Google Scholar 

  59. Tao AR, Habas Yang SP (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325

    Article  Google Scholar 

  60. Turkevitch J, Stevenson PC, Hillier J (1951) Nucleation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  61. Frens G (1972) Particle size an d sol stability in metal colloids. Colloid Polym Sci 250:736–741

    Google Scholar 

  62. Brust M, Kiely CJ (2002) Some recent advances in nanostructure preparation from gold and silver: a short topical review. Colloids Surf A Physicochem Eng Asp 202:175–186

    Article  Google Scholar 

  63. Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    Article  Google Scholar 

  64. Southam G, Saunders JA (2005) The geomicrobiology of ore deposits. Econ Geol 100:1067–1084

    Article  Google Scholar 

  65. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  Google Scholar 

  66. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96(24):13611–13614

    Article  Google Scholar 

  67. Konishi Y, Yoshida S, Asai S (1995) Bioleaching of pyrite by acidophilic thermophile Acidianus brierleyi. Biotechnol Bioeng 48(6):592–600

    Article  Google Scholar 

  68. Beveridge TJ, Murray RGJ (1976) Uptake and retention of metals by cell walls of Bacillus subtilis. J Bacteriol 127(3):1502–1518

    Google Scholar 

  69. Southam G, Beveridge TJ (1994) The in vitro formation of placer gold by bacteria. Geochim Cosmochim Acta 58:4527–4530

    Article  Google Scholar 

  70. Kalishwaralal K, Deepak V, Ram Kumar Pandian S, Gurunathan S (2009) Biosynthesis of gold nanocubes from Bacillus lichemiformis. Bioresour Technol 100:5356–5358

    Article  Google Scholar 

  71. Law N, Ansari S, Livens FR, Renshaw JC, Lloyd JR (2008) Formation of nanoscale elemental silver particles via enzymatic reduction by Geobacter sulfurreducens. Appl Environ Microbiol 74:7090–7093

    Article  Google Scholar 

  72. Kalimuthu K, Babu SR, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthes is of silver nanoparticles by Bacillus licheniformis. Colloids Surf B Biointerfaces 65:150–151

    Article  Google Scholar 

  73. Kalathil S, Lee J, Cho MH (2011) Electrochemically active biofilm-mediated synthesis of silver nanoparticles in water. Green Chem. doi:10.1039/c1gc15309a

    Google Scholar 

  74. Reith F, Etschmann B, Grosse C, Moors H, Benotmane MA, Monsieurs P, Grass G, Doonan C, Vogt S, Lai B, Martinez-Criado G, George GN, Nies DH, Mergeay M, Pring A, Southam G, Brugger J (2009) Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Natl Acad Sci U S A 106:17757–17762

    Article  Google Scholar 

  75. He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Mater Lett 61:3984–3987

    Article  Google Scholar 

  76. Sastry M, Ahmad A, Khan IM, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162–170

    Google Scholar 

  77. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318

    Article  Google Scholar 

  78. Kaushik, P, Dhiman AK (2002) Medicinal plants and raw drugs of India, P.XII+623. Retrieved from http://www.vedicbooks.net/medicinal-plants-and-raw-drugs-of-india-p-886.html

  79. Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68:88–92

    Article  Google Scholar 

  80. Kathiresan K, Manivannan S, Nabeel AM, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus Penicillum fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 71:133–137

    Article  Google Scholar 

  81. Duran N, Marcato DP, Alves LO, De Souza G, Esposito E (2005) Mechanical aspect of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 117

    Google Scholar 

  82. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2007) Silver-protein (core-shell) nanoparticle production using spent mushroom substrate. Langmuir 23(13):7113–7117

    Article  Google Scholar 

  83. Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305

    Article  Google Scholar 

  84. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parischa R, Ajayakumar PV, Alam M, Kumar R, Sastry M (2001) Fungus mediated synthesis of silver nanoparticles and their immobilization in the mycelia matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  Google Scholar 

  85. Absar A, Satyajyoti S, Khan MI, Rajiv K, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnnol 1:147–153

    Google Scholar 

  86. Bigall NC, Reitzig M, Naumann W, Simon P, van Pée KH, Eychmüller A (2008) Fungal templates for noble metal nanoparticles and their application in catalysis. Chem Int 47:7876–7879

    Article  Google Scholar 

  87. Philip D (2009) Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochem Acta Part A 73:374–381

    Article  Google Scholar 

  88. Torresday JLG, Parsons JG, Gomez Videa EJP, Troian HE, Santiago IP, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live alfa alfa plants. Nanolett 2(4):397–401

    Article  Google Scholar 

  89. Bali R, Razak N, Lumb A, Harris AT (2006) The synthesis of metal nanoparticles inside live plants. IEEE Xplore. doi:10.1109/ICONN.2006.340592

    Google Scholar 

  90. Fahmy TYA, Mobarak F (2008) Vaccination of biological cellulose fibers with glucose: a gateway to novel nanocomposites. Int J Biol Macromol 42(1):52

    Article  Google Scholar 

  91. Fahmy TYA, Mobarak F (2011) Green nanotechnology: a short cut to beneficiation of natural fibers. Int J Biol Macromol 48(1):134

    Article  Google Scholar 

  92. Parasar UK, Saxena PS, Srivastava A (2009) Bioinspired synthesis of silver nanoparticles. Dig J Nanomater Biostruct 4(1):159–166

    Google Scholar 

  93. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag and bimetallic Au core- Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    Article  Google Scholar 

  94. Tripathi A, Chandrasekaran NA, Raichur M, Mukherjee A (2009) Antibacterial applications of silver nanoparticles synthesized by aqueous extract of Azadirachta indica (Neem) leaves. J Biomed Nanotechnol 5:93–98

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Vice Chancellor, Prof. R.L. Hangloo for his interest in this work and PURSE programme, Department of Science and Technology, Govt. of India, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debjani Nath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nath, D. (2015). Safer Nanoformulation for the Next Decade. In: Basiuk, V., Basiuk, E. (eds) Green Processes for Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-15461-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15461-9_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15460-2

  • Online ISBN: 978-3-319-15461-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics