Skip to main content

Model of Collaborative Data Exchange for Inland Mobile Navigation

  • Chapter
  • First Online:
Soft Computing in Computer and Information Science

Abstract

Current mobile navigation systems increasingly rely on users’ input and networking. Inland traffic participants use many different sensors for navigational purposes which can be used to acquire missing information or to verify data provided in Electronic Navigational Charts or by other available information services. MOBINAV system is being developed mainly for recreational users of inland waters. It combines marine achievements in fields of advanced ECDIS systems with inland and leisure specifics needed to ensure a complete picture of the navigational situation. In this paper we present a full model of user data exchange obtained by their mass collaboration. Main assumptions, types of information, model description, and its verification method are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pillich, B., Schack, C.: Next generation ECDIS for commercial and military uses. OCEANS ’02 MTS/IEEE 2, 1025–1032 (2002)

    Google Scholar 

  2. Pietrzykowski, Z., Borkowski, P., Wolejsza, P.: Marine integrated navigational decision support system. In: Book Series: Communications in Computer and Information Science, 12th International Conference on Transport Systems Telematics, vol. 329, pp. 284–292 (2012)

    Google Scholar 

  3. Kazimierski, W., Wawrzyniak, N.: Modification of ECDIS interface for the purposes of geoinformatic system for port security. Annuals Navig. 20, 51–70 (2013). Gdansk

    Google Scholar 

  4. Kazimierski, W.: Problems of Data Fusion of Tracking Radar and AIS for the Needs of Integrated Navigation Systems at Sea. In: Rohling, H. (ed.) Book Series: International Radar Symposium Proceedings, 14th International Radar Symposium (IRS), vols. 1 and 2, pp. 270–275. Dresden (2013)

    Google Scholar 

  5. Pfliegl, R., Back, A.: Increasing the attractiveness of inland waterway transport with e-transport river information services. Transp. Res. Rec. 1963, 15–22 (2006)

    Article  Google Scholar 

  6. Lubczonek, J., Stateczny, A.: Aspects of spatial planning of radar sensor network for inland waterways surveillance. In: Book Series: European Radar Conference-EuRAD, 6th European Radar Conference (EURAD 2009), pp. 501–504. Rome (2009)

    Google Scholar 

  7. Wawrzyniak, N., Hyla, T.: Managing depth information uncertainty in inland mobile navigation systems. In: Kryszkiewicz, M., et al. (eds.) Book series: LNAI, RSEISP 2014, vol. 8537, pp. 343–350. Springer, Heidelberg (2014)

    Google Scholar 

  8. Abras, C., Maloney-Krichmar, D., Preece, J.: User-centered design. Encyclopedia of Human-Computer Interaction. Sage Publications, Thousand Oaks (2004)

    Google Scholar 

  9. Fastenbauer, M., Sattler, M., Schilk, G.: River Information Services for commercial users in the Inland Waterway sector. In: IEEE on Logistics and Industrial Informatics, LINDI 2007, pp. 31–36, (2007)

    Google Scholar 

  10. Ramakrishnan, R., Baptist, A., Ercegovac, V., Hanselman, M., Kabra, N., Marathe, A., Shaft, U.: Mass collaboration: a case study. In: Proceedings of the International Database Engineering and Applications Symposium (IDEAS’04), pp. 133–146. IEEE (2004)

    Google Scholar 

  11. Hudson-Smith, A., Batty, M., Crooks, A., Milton, R.: Mapping for the masses: accessing web 2.0 through crowdsourcing. Soc. Sci. Comput. Rev. 27(4), 524–538 (2009)

    Article  Google Scholar 

  12. Heipke, C.: Crowdsourcing geospatial data. ISPRS J. Photogramm. Remote Sens. 65(6), 550–557 (2010)

    Article  Google Scholar 

  13. Waze Mobile. Real-time maps and traffic information based on the wisdom of the crowd [Online]. http://www.waze.com/homepage/

  14. Jamsa, J., Luimula, M.: Advanced Car Navigation - Future Vehicle Instrumentation for Situation-Aware Services. In: 12th IEEE International Conference on Mobile Data Management, vol. 2, pp. 7–10. (2011)

    Google Scholar 

  15. Przyborski, M., Pyrchla, J.: Reliability of the navigational data. In: Klopotek, MA., Wierzchon, ST., Trojanowski, K. (eds.) International Intelligent Information Systems/Intelligent Information Processing and Web Mining Conference (IIS: IIPWM 03). Advances in Soft Computing, pp. 541–545. Zakopane (2003)

    Google Scholar 

  16. Lubczonek, J., Stateczny, A.: Concept of neural model of the sea bottom surface. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing Book Series: Advances in Soft Computing, pp. 861–866. Zakopane (2003)

    Google Scholar 

  17. Stateczny, A.: Artificial neural networks for comparative navigation. In: Rutkowski, L., Siekmann, J., Tadeusiewicz, R., et al. (eds.) Artificial Intelligence and Soft Computing - ICAISC 2004. LNAI, vol. 3070, pp. 1187–1192. Springer, Heidelberg (2004)

    Google Scholar 

  18. Stateczny, A., Wlodarczyk-Sielicka, M.: Self-Organizing Artificial Neural Networks into Hydrographic Big Data Reduction Process. In: Kryszkiewicz et al. (eds.) 2014 Joint Rough Set Symposium, LNAI, pp. 335–342, Springer, Heidelberg (2014)

    Google Scholar 

  19. Newcomer, E.: Understanding Web Services: XML, WSDL, SOAP, and UDDI. Addison-Wesley Professional, Boston (2002)

    Google Scholar 

  20. Kazimierski, W., Zaniewicz G., Stateczny, A.: Verification of multiple model neural tracking filter with ship’s radar. In: Kulpa, K. (ed) on 13th International Radar Symposium (IRS). Book Series: International Radar Symposium Proceedings, pp. 549–553, Warsaw (2012)

    Google Scholar 

Download references

Acknowledgments

This scientific research work is supported by the National Centre for Research and Development (NCBiR) of Poland (grant No. LIDER/039/693/L-4/12/NCBR/2013) in 2013–2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Wawrzyniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hyla, T., Wawrzyniak, N., Kazimierski, W. (2015). Model of Collaborative Data Exchange for Inland Mobile Navigation. In: Wiliński, A., Fray, I., Pejaś, J. (eds) Soft Computing in Computer and Information Science. Advances in Intelligent Systems and Computing, vol 342. Springer, Cham. https://doi.org/10.1007/978-3-319-15147-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15147-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15146-5

  • Online ISBN: 978-3-319-15147-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics