Skip to main content

Effects of a High Fat Diet and Taurine Supplementation on Metabolic Parameters and Skeletal Muscle Mitochondrial Function in Rats

  • Conference paper
Taurine 9

Abstract

Obesity and consumption of a high fat diet are risk factors for the metabolic syndrome and is thought to confer changes in skeletal muscle mitochondrial function. Taurine supplementation has been shown to be able to counteract at least part of the metabolic changes induced by consumption of a high fat diet, yet little is known about the effect of taurine supplementation upon mitochondrial function. Here we assessed the effect of taurine supplementation on glucose and lipid parameters as well as skeletal muscle mitochondrial function in a high fat diet rat model.

Male Wistar rats were fed either a control diet, a high fat diet or a high fat diet with taurine supplementation (2 % in the drinking water) for 12 weeks.

High fat diet caused an increase in body weight and a marked glucose intolerance. Taurine had no effect on body weight or glucose tolerance. We saw no difference between groups with regard to fasting plasma glucose, free fatty acids or triglycerides or skeletal muscle triglyceride content. However, high fat diet resulted in a marked increase in hepatic triglyceride content, which was counteracted by taurine. High fat diet increased liver, but not skeletal muscle or plasma taurine concentration. Taurine caused an increase in plasma, liver and skeletal muscle taurine concentration. High fat diet increased state 3 respiration in skeletal muscle when using pyruvate as substrate, with no effect of taurine.

In conclusion, taurine counteracted a subset of parameters changed by the high fat diet, but had no effect on mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HF:

High fat

NEFA:

Non-esterified fatty acids

Tau :

taurine

TG :

Triglycerides

References

  • Asmann YW, Stump CS, Short KR, Coenen-Schimke JM, Guo Z, Bigelow ML et al (2006) Skeletal muscle mitochondrial functions, mitochondrial DNA copy numbers, and gene transcript profiles in type 2 diabetic and nondiabetic subjects at equal levels of low or high insulin and euglycemia. Diabetes 55(12):3309–3319

    Article  CAS  PubMed  Google Scholar 

  • Buettner R, Schölmerich J, Bollheimer LC (2007) High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring) 15(4):798–808

    Article  CAS  Google Scholar 

  • Camargo RL, Batista TM, Ribeiro RA, Velloso LA, Boschero AC, Carneiro EM (2013) Effects of taurine supplementation upon food intake and central insulin signaling in malnourished mice fed on a high-fat diet. Adv Exp Med Biol 776:93–103

    Article  CAS  PubMed  Google Scholar 

  • Carneiro EM, Latorraca MQ, Araujo E, Beltrá M, Oliveras MJ, Navarro M et al (2009) Taurine supplementation modulates glucose homeostasis and islet function. J Nutr Biochem 20(7):|503–511

    Article  CAS  PubMed  Google Scholar 

  • El Idrissi A, Trenkner E (1999) Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism. J Neurosci Off J Soc Neurosci 19(21):9459–9468

    Google Scholar 

  • Fritzen AJ, Grunnet N, Quistorff B (2007) Flux control analysis of mitochondrial oxidative phosphorylation in rat skeletal muscle: pyruvate and palmitoyl-carnitine as substrates give different control patterns. Eur J Appl Physiol 101(6):679–689

    Article  CAS  PubMed  Google Scholar 

  • Fukuda N, Yoshitama A, Sugita S, Fujita M, Murakami S (2011) Dietary taurine reduces hepatic secretion of cholesteryl ester and enhances fatty acid oxidation in rats fed a high-cholesterol diet. J Nutr Sci Vitaminol (Tokyo) 57(2):144–149

    Article  CAS  Google Scholar 

  • Harada H, Tsujino T, Watari Y, Nonaka H, Emoto N, Yokoyama M (2004) Oral taurine supplementation prevents fructose-induced hypertension in rats. Heart Vessels 19(3):132–136

    Article  PubMed  Google Scholar 

  • Hoeks J, de Wilde J, Hulshof MFM, van den Berg SAA, Schaart G, van Dijk KW et al (2011) High fat diet-induced changes in mouse muscle mitochondrial phospholipids do not impair mitochondrial respiration despite insulin resistance. PLoS One 6(11):e27274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iossa S, Mollica MP, Lionetti L, Crescenzo R, Botta M, Liverini G (2002) Skeletal muscle oxidative capacity in rats fed high-fat diet. Int J Obes Relat Metab Disord 26(1):65–72

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Schaffer SW, Azuma J (2012) The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids 42(5):1529–1539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jong CJ, Ito T, Mozaffari M, Azuma J, Schaffer S (2010) Effect of beta-alanine treatment on mitochondrial taurine level and 5-taurinomethyluridine content. J Biomed Sci 17(Suppl 1):S25

    Article  PubMed Central  PubMed  Google Scholar 

  • Jørgensen W, Jelnes P, Rud KA, Hansen LL, Grunnet N, Quistorff B (2012) Progression of type 2 diabetes in GK rats affects muscle and liver mitochondria differently: pronounced reduction of complex II flux is observed in liver only. Am J Physiol Endocrinol Metab 303(4):E515–E523

    Article  PubMed  Google Scholar 

  • Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51(10):2944–2950

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Nolte LA, Hansen PA, Han DH, Kawanaka K, Holloszy JO (1999) Insulin resistance of muscle glucose transport in male and female rats fed a high-sucrose diet. Am J Physiol 276(3 Pt 2):R665–R672

    CAS  PubMed  Google Scholar 

  • Kim KS, Oh DH, Kim JY, Lee BG, You JS, Chang KJ et al (2012) Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term diabetes. Exp Mol Med 44(11):665–673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Larsen LH, Ørstrup LKH, Hansen SH, Grunnet N, Quistorff B, Mortensen OH (2013) The effect of long-term taurine supplementation and fructose feeding on glucose and lipid homeostasis in Wistar rats. Adv Exp Med Biol 776:39–50

    Article  CAS  PubMed  Google Scholar 

  • Matsuda M, Asano Y (2012) A simple assay of taurine concentrations in food and biological samples using taurine dioxygenase. Anal Biochem 427(2):121–123

    Article  CAS  PubMed  Google Scholar 

  • Mogensen M, Sahlin K, Fernström M, Glintborg D, Vind BF, Beck-Nielsen H et al (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56(6):1592–1599

    Article  CAS  PubMed  Google Scholar 

  • Murakami S, Kondo-Ohta Y, Tomisawa K (1999) Improvement in cholesterol metabolism in mice given chronic treatment of taurine and fed a high-fat diet. Life Sci 64(1):83–91

    Article  CAS  PubMed  Google Scholar 

  • Nakaya Y, Minami A, Harada N, Sakamoto S, Niwa Y, Ohnaka M (2000) Taurine improves insulin sensitivity in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous type 2 diabetes. Am J Clin Nutr 71(1):54–58

    CAS  PubMed  Google Scholar 

  • Nardelli TR, Ribeiro RA, Balbo SL, Vanzela EC, Carneiro EM, Boschero AC et al (2011) Taurine prevents fat deposition and ameliorates plasma lipid profile in monosodium glutamate-obese rats. Amino Acids 41(4):901–908

    Article  CAS  PubMed  Google Scholar 

  • Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350(7):664–671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schrauwen P, Hesselink MKC (2004) Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes 53(6):1412–1417

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Suzuki T, Wada T, Saigo K, Watanabe K (2002) Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J 21(23):6581–6589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuboyama-Kasaoka N, Shozawa C, Sano K, Kamei Y, Kasaoka S, Hosokawa Y et al (2006) Taurine (2-aminoethanesulfonic acid) deficiency creates a vicious circle promoting obesity. Endocrinology 147(7):3276–3284

    Article  CAS  PubMed  Google Scholar 

  • Turner N, Bruce CR, Beale SM, Hoehn KL, So T, Rolph MS et al (2007) Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 56(8):2085–2092

    Article  CAS  PubMed  Google Scholar 

  • Warskulat U, Borsch E, Reinehr R, Heller-Stilb B, Mönnighoff I, Buchczyk D et al (2006) Chronic liver disease is triggered by taurine transporter knockout in the mouse. FASEB J 20(3):574–576

    PubMed  Google Scholar 

  • Wieland O (1984) Methods of enzymatic analysis, vol VI. Verlag Chemie, Weinheim, pp 504–510, Dearfield Beach, Florida, Basel

    Google Scholar 

  • Yokogoshi H, Oda H (2002) Dietary taurine enhances cholesterol degradation and reduces serum and liver cholesterol concentrations in rats fed a high-cholesterol diet. Amino Acids 23(4):433–439

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Bi LF, Fang JH, Su XL, Da GL, Kuwamori T et al (2004) Beneficial effects of taurine on serum lipids in overweight or obese non-diabetic subjects. Amino Acids 26(3):267–271

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by The Danish Strategic Research Council grant #09-067124 and #09-059921, Danish Medical Research Council grant #271-07-0732 and #09-073413, by Købmand i Odense Johann og Hanne Weimann f. Seedorffs Legat, Gangstedfonden, Ernst Fischers mindelegat, Eva og Hans Carl Adolfs Mindelegat, and Direktør Emil Hertz og Hustru Inger Hertz Fond.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Hartvig Mortensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mortensen, O.H., Jørgensen, W., Frandsen, L., Grunnet, N., Quistorff, B. (2015). Effects of a High Fat Diet and Taurine Supplementation on Metabolic Parameters and Skeletal Muscle Mitochondrial Function in Rats. In: Marcinkiewicz, J., Schaffer, S. (eds) Taurine 9. Advances in Experimental Medicine and Biology, vol 803. Springer, Cham. https://doi.org/10.1007/978-3-319-15126-7_29

Download citation

Publish with us

Policies and ethics