Skip to main content

Proving, Baking and Cooling

  • Chapter
  • First Online:
Technology of Breadmaking

Abstract

The principles of psychrometry and their relevance to baking are introduced and the mechanisms of heat transfer to dough pieces discussed. Key features of prover and oven design and operation are reviewed. The factors which contribute to the expansion of the gas bubble foam in the dough during proof and the conversion to a sponge (open structure) in the final loaf are detailed. The influence of enzymic activity on the foam-to-sponge in the early stages of baking are considered and the mechanisms by which crust character is formed identified. The need for humidity throughout the proving, baking and cooling is considered and typical moisture losses at the different stages identified. The design, construction and use of different coolers is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allied Bakeries Ltd. (1986). Method of cooling baked goods. GB Patent 2 134 636B, 20 August, HMSO, London.

    Google Scholar 

  • Anon. (2008). Revolution on the bread shelf. Baking+Biscuit, 3, 12–13.

    Google Scholar 

  • Anon. (2009). Crustless without waste. Baking+Biscuit, 3, 28–30.

    Google Scholar 

  • Anon. (2013). The next generation. Baking+Biscuit, 5, 30–31.

    Google Scholar 

  • Brown, J. (1993). Advances in breadmaking technology. In B. S. Kamel & C. E. Stauffer (Eds.), Advances in baking technology (pp. 38–87). Glasgow: Blackie Academic & Professional.

    Chapter  Google Scholar 

  • Brown, G. G., Brownell, L. E. (1941). University of Michigan. Ann Arbor, sponsored project for APV Baker Inc.

    Google Scholar 

  • Campbell, G. M. (2003). Bread aeration. In S. P. Cauvain (Ed.), Bread making: Improving quality (pp. 352–374). Cambridge: Woodhead Publishing Ltd.

    Chapter  Google Scholar 

  • Cauvain, S. P. (2004). Filling in the holes. British Baker, 6, 12–13.

    Google Scholar 

  • Cauvain, S. P., & Chamberlain, N. (1988). The bread improving effect of fungal alpha-amylase. J Cereal Science, 8, 239–248.

    Article  CAS  Google Scholar 

  • Cauvain, S. P., & Young, L. S. (2001). Baking problems solved. Cambridge: Woodhead Publishing Ltd.

    Book  Google Scholar 

  • Cauvain, S. P., & Young, L. S. (2008). Bakery food manufacture & quality: Water control & effects. Oxford: Blackwell Science.

    Book  Google Scholar 

  • Cauvain, S. P., & Young, L. S. (2009). More baking problems solved. Cambridge: Woodhead Publishing Ltd.

    Book  Google Scholar 

  • ETSU. (2002). Reducing energy costs in industrial bakeries. Energy efficiency good practice guide no. 309. Energy Efficiency Best Practice Programme, ETSU, Harwell, UK.

    Google Scholar 

  • International Electrotechnical Committee (TC56). (1996). Application Guide on Life Cycle Costing.

    Google Scholar 

  • Ovadia, D. (1994). Dielectric baking of bread—past and future. Microwave World, 15(2), 16–22.

    Google Scholar 

  • Perez-Locas, C., & Yaylayan, V. A. (2010). The Maillard reaction and food quality deterioration. In L. F. Skibsted, J. Risbo, & M. L. Andersen (Eds.), Chemical deterioration and physical instability of food and beverages (pp. 70–94). Cambridge: Woodhead Publishing.

    Chapter  Google Scholar 

  • Rank Hovis McDougall. (1988). A method and apparatus for cooling foodstuffs. GB Patent 2 206 190A, 29 December, HMSO, London.

    Google Scholar 

  • Rank Hovis McDougall. (1989). Travelling bread cooler. GB Patent 2 217 969A, 8 November, HMSO, London.

    Google Scholar 

  • Schiffmann, R. F. (1993). Microwave technology in baking. In B. S. Kamel & C. E. Stauffer (Eds.), Advances in baking technology (pp. 292–315). Glasgow: Blackie Academic & Professional.

    Chapter  Google Scholar 

  • Schiffmann, R. F., Roth, H., Stein, E. W., Kaufman, H. B., Hochhauser, A., & Clark, F. (1971). Applications of microwave energy to doughnut production. Food Technology, 25, 718–722.

    CAS  Google Scholar 

  • Whitworth, M. B., & Alava, J. M. (1999). The imaging and measurement of bubbles in bread doughs. In G. M. Campbell, C. Webb, S. S. Pandiella, & K. Niranjan (Eds.), Bubbles in Food (pp. 221–232). St. Paul, MN: Eagan Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cauvain, S. (2015). Proving, Baking and Cooling. In: Technology of Breadmaking. Springer, Cham. https://doi.org/10.1007/978-3-319-14687-4_5

Download citation

Publish with us

Policies and ethics