Skip to main content

CK2 Function in the Regulation of Akt Pathway

  • Chapter
  • First Online:
Protein Kinase CK2 Cellular Function in Normal and Disease States

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 12))

  • 889 Accesses

Abstract

CK2 and Akt (also known as PKB) are two antiapoptotic protein kinases, which phosphorylate hundreds of substrates. While CK2 is constitutively active, Akt, under physiological conditions, is activated by external growth/proliferation signals. However, in cancer, on the one hand, the mechanism of Akt activation is frequently dysregulated and, on the other, CK2 is usually overexpressed. Both kinases are therefore involved in tumorigenesis and considered promising drug targets.

CK2 profoundly intersects the Akt signaling: it phosphorylates several components of the Akt pathway, producing positive effects on stimulatory elements while blocking the inhibitory ones. The final outcome is that CK2 potentiates the Akt survival message.

Here we summarize the major contact points between the two kinases, focusing on the direct connection due to the CK2-dependent phosphorylation of Akt1 Ser129, but also on different levels of integration, spanning from the Akt activation mechanism at plasma membrane to the downstream effectors. It will be also highlighted how this orchestrated circuitry involving Akt and CK2 is aberrantly amplified under certain pathological circumstances, offering sites for therapeutic intervention. However, we will also review recent findings concerning specific regulation of different Akt isoforms by CK2, which can explain some of their divergent functions and warn against a too cursory pharmacological targeting of CK2/Akt, which instead can be planned only once a comprehensive picture of their connections in a specific tumor cell type has been depicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AML:

Acute myeloid leukemia

B-ALL:

B-cell acute lymphoblastic leukemia

CLL:

Chronic lymphocytic leukemia

CML:

Chronic myeloid leukemia

Fbxo9:

F-box only protein 9

GF:

Growth factor

NEP:

Neprilysin

PAF:

Platelet-activating factor

PD-1:

Receptor programmed death 1

PH:

Pleckstrin homology

PHLPP:

Pleckstrin homology domain leucine-rich repeat protein phosphatase

PI3K:

Phosphoinositide 3-kinase

PIP3 :

Phosphatidylinositol-3,4,5-trisphosphate

Plk3:

Polo-like kinase 3

PML:

Promyelocytic leukemia gene

PP2A:

Protein phosphatase 2A

T-ALL:

T-cell acute lymphoblastic leukemia

Tel2:

Telomere maintenance 2

TIF-1A:

Transcription initiation factor I

Tti1:

Tel2-interacting protein 1

References

  1. Pinna LA (2002) Protein kinase CK2: a challenge to canons. J Cell Sci 115:3873–3878

    Article  CAS  PubMed  Google Scholar 

  2. Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17:349–368

    Article  CAS  PubMed  Google Scholar 

  3. Ahmed K, Gerber DA, Cochet C (2002) Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol 12:226–230

    Article  CAS  PubMed  Google Scholar 

  4. Ahmad KA, Wang G, Unger G et al (2008) Protein kinase CK2 – a key suppressor of apoptosis. Adv Enzyme Regul 48:179–187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. St-Denis NA, Litchfield DW (2009) Protein kinase CK2 in health and disease: from birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival. Cell Mol Life Sci 66:1817–1829

    Article  CAS  PubMed  Google Scholar 

  6. Ruzzene M, Pinna LA (2010) Addiction to protein kinase CK2: a common denominator of diverse cancer cells? Biochim Biophys Acta 1804:499–504

    Article  CAS  PubMed  Google Scholar 

  7. Sale EM, Sale GJ (2008) Protein kinase B: signalling roles and therapeutic targeting. Cell Mol Life Sci 65:113–127

    Article  CAS  PubMed  Google Scholar 

  8. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Fayard E, Tintignac LA, Baudry A et al (2005) Protein kinase B/Akt at a glance. J Cell Sci 118:5675–5678

    Article  CAS  PubMed  Google Scholar 

  10. Bozulic L, Surucu B, Hynx D et al (2008) PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell 30:203–213

    Article  CAS  PubMed  Google Scholar 

  11. Alessi DR, Cohen P (1998) Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 8:55–62

    Article  CAS  PubMed  Google Scholar 

  12. Brognard J, Sierecki E, Gao T et al (2007) PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell 25:917–931

    Article  CAS  PubMed  Google Scholar 

  13. Toker A (2012) Achieving specificity in Akt signaling in cancer. Adv Biol Regul 52:78–87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A 96:4240–4245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Di Cristofano A, Pandolfi PP (2000) The multiple roles of PTEN in tumor suppression. Cell 100:387–390

    Article  PubMed  Google Scholar 

  16. Torres J, Pulido R (2001) The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. J Biol Chem 276:993–998

    Article  CAS  PubMed  Google Scholar 

  17. Miller SJ, Lou DY, Seldin DC et al (2002) Direct identification of PTEN phosphorylation sites. FEBS Lett 528:145–153

    Article  CAS  PubMed  Google Scholar 

  18. Vazquez F, Grossman SR, Takahashi Y et al (2001) Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex. J Biol Chem 276:48627–48630

    Article  CAS  PubMed  Google Scholar 

  19. Silva A, Yunes JA, Cardoso BA et al (2008) PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest 118:3762–3774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Gomes AM, Soares MV, Ribeiro P et al (2014) Adult B-cell acute lymphoblastic leukemia cells display decreased PTEN activity and constitutive hyperactivation of PI3K/Akt pathway despite high PTEN protein levels. Haematologica 99:1062–1068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. He L, Fan C, Gillis A et al (2007) Co-existence of high levels of the PTEN protein with enhanced Akt activation in renal cell carcinoma. Biochim Biophys Acta 1772:1134–1142

    Article  CAS  PubMed  Google Scholar 

  22. Al-Khouri AM, Ma Y, Togo SH et al (2005) Cooperative phosphorylation of the tumor suppressor phosphatase and tensin homologue (PTEN) by casein kinases and glycogen synthase kinase 3beta. J Biol Chem 280:35195–35202

    Article  CAS  PubMed  Google Scholar 

  23. Xu D, Yao Y, Jiang X et al (2010) Regulation of PTEN stability and activity by Plk3. J Biol Chem 285:39935–39942

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Siepmann M, Kumar S, Mayer G et al (2010) Casein kinase 2 dependent phosphorylation of neprilysin regulates receptor tyrosine kinase signaling to Akt. PLoS One 5:e13134

    Article  PubMed Central  PubMed  Google Scholar 

  25. Patsoukis N, Li L, Sari D et al (2013) PD-1 increases PTEN phosphatase activity while decreasing PTEN protein stability by inhibiting casein kinase 2. Mol Cell Biol 33:3091–3098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kang NI, Yoon HY, Kim HA et al (2011) Protein kinase CK2/PTEN pathway plays a key role in platelet-activating factor-mediated murine anaphylactic shock. J Immunol 186:6625–6632

    Article  CAS  PubMed  Google Scholar 

  27. Ning K, Miller LC, Laidlaw HA et al (2006) A novel leptin signalling pathway via PTEN inhibition in hypothalamic cell lines and pancreatic beta-cells. EMBO J 25:2377–2387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Heiker JT, Wottawah CM, Juhl C et al (2009) Protein kinase CK2 interacts with adiponectin receptor 1 and participates in adiponectin signaling. Cell Signal 21:936–942

    Article  CAS  PubMed  Google Scholar 

  29. Barata JT (2011) The impact of PTEN regulation by CK2 on PI3K-dependent signaling and leukemia cell survival. Adv Enzyme Regul 51:37–49

    Article  CAS  PubMed  Google Scholar 

  30. Di Maira G, Salvi M, Arrigoni G et al (2005) Protein kinase CK2 phosphorylates and upregulates Akt/PKB. Cell Death Differ 12:668–677

    Article  PubMed  Google Scholar 

  31. Kim JS, Eom JI, Cheong JW et al (2007) Protein kinase CK2alpha as an unfavorable prognostic marker and novel therapeutic target in acute myeloid leukemia. Clin Cancer Res 13:1019–1028

    Article  CAS  PubMed  Google Scholar 

  32. Cheong JW, Min YH, Eom JI et al (2010) Inhibition of CK2{alpha} and PI3K/Akt synergistically induces apoptosis of CD34 + CD38− leukaemia cells while sparing haematopoietic stem cells. Anticancer Res 30:4625–4634

    CAS  PubMed  Google Scholar 

  33. Shehata M, Schnabl S, Demirtas D et al (2010) Reconstitution of PTEN activity by CK2 inhibitors and interference with the PI3-K/Akt cascade counteract the antiapoptotic effect of human stromal cells in chronic lymphocytic leukemia. Blood 116:2513–2521

    Article  CAS  PubMed  Google Scholar 

  34. Borgo C, Cesaro L, Salizzato V et al (2013) Aberrant signalling by protein kinase CK2 in imatinib-resistant chronic myeloid leukaemia cells: biochemical evidence and therapeutic perspectives. Mol Oncol 7:1103–1115

    Article  CAS  PubMed  Google Scholar 

  35. Buontempo F, Orsini E, Martins LR et al (2014) Cytotoxic activity of the casein kinase 2 inhibitor CX-4945 against T-cell acute lymphoblastic leukemia: targeting the unfolded protein response signaling. Leukemia 28:543–553

    Article  CAS  PubMed  Google Scholar 

  36. Ryu BJ, Baek SH, Kim J et al (2012) Anti-androgen receptor activity of apoptotic CK2 inhibitor CX4945 in human prostate cancer LNCap cells. Bioorg Med Chem Lett 22:5470–5474

    Article  CAS  PubMed  Google Scholar 

  37. Chatterjee A, Chatterjee U, Ghosh MK (2013) Activation of protein kinase CK2 attenuates FOXO3a functioning in a PML-dependent manner: implications in human prostate cancer. Cell Death Dis 4:e543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Pierre F, Chua PC, O'Brien SE et al (2011) Pre-clinical characterization of CX-4945, a potent and selective small molecule inhibitor of CK2 for the treatment of cancer. Mol Cell Biochem 356:37–43

    Article  CAS  PubMed  Google Scholar 

  39. Noh EM, Lee YR, Chay KO et al (2011) Estrogen receptor alpha induces down-regulation of PTEN through PI3-kinase activation in breast cancer cells. Mol Med Rep 4:215–219

    CAS  PubMed  Google Scholar 

  40. Stahl S, Branca RM, Efazat G et al (2011) Phosphoproteomic profiling of NSCLC cells reveals that ephrin B3 regulates pro-survival signaling through Akt1-mediated phosphorylation of the EphA2 receptor. J Proteome Res 10:2566–2578

    Article  CAS  PubMed  Google Scholar 

  41. Bliesath J, Huser N, Omori M et al (2012) Combined inhibition of EGFR and CK2 augments the attenuation of PI3K-Akt-mTOR signaling and the killing of cancer cells. Cancer Lett 322:113–118

    Article  CAS  PubMed  Google Scholar 

  42. Ku MJ, Park JW, Ryu BJ et al (2013) CK2 inhibitor CX4945 induces sequential inactivation of proteins in the signaling pathways related with cell migration and suppresses metastasis of A549 human lung cancer cells. Bioorg Med Chem Lett 23:5609–5613

    Article  CAS  PubMed  Google Scholar 

  43. Olsen BB, Svenstrup TH, Guerra B (2012) Downregulation of protein kinase CK2 induces autophagic cell death through modulation of the mTOR and MAPK signaling pathways in human glioblastoma cells. Int J Oncol 41:1967–1976

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Zheng Y, McFarland BC, Drygin D et al (2013) Targeting protein kinase CK2 suppresses prosurvival signaling pathways and growth of glioblastoma. Clin Cancer Res 19:6484–6494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Parker R, Clifton-Bligh R, Molloy MP (2014) Phosphoproteomics of MAPK inhibition in BRAF mutated cells and a role for the lethal synergism of dual BRAF and CK2 inhibition. Mol Cancer Ther 13(7):1894–1906

    Article  CAS  PubMed  Google Scholar 

  46. Zanin S, Borgo C, Girardi C et al (2012) Effects of the CK2 inhibitors CX-4945 and CX-5011 on drug-resistant cells. PLoS One 7:e49193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Di Maira G, Brustolon F, Pinna LA et al (2009) Dephosphorylation and inactivation of Akt/PKB is counteracted by protein kinase CK2 in HEK 293T cells. Cell Mol Life Sci 66:3363–3373

    Article  CAS  PubMed  Google Scholar 

  48. Sato S, Fujita N, Tsuruo T (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci U S A 97:10832–10837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Ponce DP, Maturana JL, Cabello P et al (2011) Phosphorylation of AKT/PKB by CK2 is necessary for the AKT-dependent up-regulation of beta-catenin transcriptional activity. J Cell Physiol 226:1953–1959

    Article  CAS  PubMed  Google Scholar 

  50. Calleja V, Laguerre M, Parker PJ et al (2009) Role of a novel PH-kinase domain interface in PKB/Akt regulation: structural mechanism for allosteric inhibition. PLoS Biol 7:e17

    Article  PubMed  Google Scholar 

  51. Wu WI, Voegtli WC, Sturgis HL et al (2010) Crystal structure of human AKT1 with an allosteric inhibitor reveals a new mode of kinase inhibition. PLoS One 5:e12913

    Article  PubMed Central  PubMed  Google Scholar 

  52. Guerra B (2006) Protein kinase CK2 subunits are positive regulators of AKT kinase. Int J Oncol 28:685–693

    CAS  PubMed  Google Scholar 

  53. le Nguyen XT, Mitchell BS (2013) Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA. Proc Natl Acad Sci U S A 110:20681–20686

    Article  PubMed Central  CAS  Google Scholar 

  54. Scaglioni PP, Yung TM, Cai LF et al (2006) A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126:269–283

    Article  CAS  PubMed  Google Scholar 

  55. Trotman LC, Alimonti A, Scaglioni PP et al (2006) Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441:523–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Miyata Y, Nishida E (2004) CK2 controls multiple protein kinases by phosphorylating a kinase-targeting molecular chaperone, Cdc37. Mol Cell Biol 24:4065–4074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Fernandez-Saiz V, Targosz BS, Lemeer S et al (2013) SCFFbxo9 and CK2 direct the cellular response to growth factor withdrawal via Tel2/Tti1 degradation and promote survival in multiple myeloma. Nat Cell Biol 15:72–81

    Article  CAS  PubMed  Google Scholar 

  58. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Wilhelm N, Kostelnik K, Gotz C et al (2012) Protein kinase CK2 is implicated in early steps of the differentiation of pre-adipocytes into adipocytes. Mol Cell Biochem 365:37–45

    Article  CAS  PubMed  Google Scholar 

  60. Al Quobaili F, Montenarh M (2012) CK2 and the regulation of the carbohydrate metabolism. Metabolism 61:1512–1517

    Article  CAS  PubMed  Google Scholar 

  61. Yang ZZ, Tschopp O, Hemmings-Mieszczak M et al (2003) Protein kinase B alpha/Akt1 regulates placental development and fetal growth. J Biol Chem 278:32124–32131

    Article  CAS  PubMed  Google Scholar 

  62. Santi SA, Lee H (2010) The Akt isoforms are present at distinct subcellular locations. Am J Physiol Cell Physiol 298:C580–C591

    Article  CAS  PubMed  Google Scholar 

  63. Bellacosa A, Testa JR, Moore R et al (2004) A portrait of AKT kinases: human cancer and animal models depict a family with strong individualities. Cancer Biol Ther 3:268–275

    Article  CAS  PubMed  Google Scholar 

  64. Stambolic V, Woodgett JR (2006) Functional distinctions of protein kinase B/Akt isoforms defined by their influence on cell migration. Trends Cell Biol 16:461–466

    Article  CAS  PubMed  Google Scholar 

  65. Dillon RL, Muller WJ (2010) Distinct biological roles for the akt family in mammary tumor progression. Cancer Res 70:4260–4264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Chin YM, Yuan X, Balk SP et al (2014) PTEN-deficient tumors depend on Akt2 for maintenance and survival. Cancer Discov 4(8):942–955

    Google Scholar 

  67. Yoeli-Lerner M, Yiu GK, Rabinovitz I et al (2005) Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol Cell 20:539–550

    Article  CAS  PubMed  Google Scholar 

  68. Chin YR, Toker A (2009) Function of Akt/PKB signaling to cell motility, invasion and the tumor stroma in cancer. Cell Signal 21:470–476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Chin YR, Toker A (2010) The actin-bundling protein palladin is an Akt1-specific substrate that regulates breast cancer cell migration. Mol Cell 38:333–344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Girardi C, James P, Zanin S et al (2014) Differential phosphorylation of Akt1 and Akt2 by protein kinase CK2 may account for isoform specific functions. Biochim Biophys Acta 1843(9):1865–1874

    Article  CAS  PubMed  Google Scholar 

  71. Wani R, Bharathi NS, Field J et al (2011) Oxidation of Akt2 kinase promotes cell migration and regulates G1-S transition in the cell cycle. Cell Cycle 10:3263–3268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Toker A, Yoeli-Lerner M (2006) Akt signaling and cancer: surviving but not moving on. Cancer Res 66:3963–3966

    Article  CAS  PubMed  Google Scholar 

  73. Kreutzer JN, Ruzzene M, Guerra B (2010) Enhancing chemosensitivity to gemcitabine via RNA interference targeting the catalytic subunits of protein kinase CK2 in human pancreatic cancer cells. BMC Cancer 10:440. doi:10.1186/1471-2407-10-440

    Article  PubMed Central  PubMed  Google Scholar 

  74. Pinna LA, Ruzzene M (1996) How do protein kinases recognize their substrates? Biochim Biophys Acta 1314:191–225

    Article  CAS  PubMed  Google Scholar 

  75. Siddiqui-Jain A, Drygin D, Streiner N et al (2010) CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res 70:10288–10298

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Ruzzene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Girardi, C., Ruzzene, M. (2015). CK2 Function in the Regulation of Akt Pathway. In: Ahmed, K., Issinger, OG., Szyszka, R. (eds) Protein Kinase CK2 Cellular Function in Normal and Disease States. Advances in Biochemistry in Health and Disease, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-14544-0_8

Download citation

Publish with us

Policies and ethics