Skip to main content

Organic Ambipolar Transistors and Circuits

  • Reference work entry
  • First Online:
Handbook of Visual Display Technology

Abstract

Ambipolar charge transport of a variety of small molecules and polymers has initiated research on ambipolar transistors and circuits. Such electronic devices can be fabricated at low temperatures on rigid or flexible large area substrates. The realization of ambipolar logic circuits is simple in comparison to the fabrication of logic circuits in complementary metal-oxide-semiconductor (CMOS) technology. Fewer layers have to be deposited and less patterning steps are required to implement simple digital circuits. In the following chapter, the basic operation principles of ambipolar transistors and circuits will be introduced. Moreover, an overview of the current ambipolar transistor technology based on different materials will be discussed, and their advantages and disadvantages compared to unipolar devices will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Ahles M, Hepp A, Schmechel R, von Seggern H (2004) Light emission from a polymer transistor. Appl Phys Lett 84:428–430

    Article  Google Scholar 

  • AlSalhi MS, Alam J, Dass LA, Raja M (2011) Recent advances in conjugated polymers for light emitting devices. Int J Mol Sci 12:2036–2054

    Article  Google Scholar 

  • Bader MA, Marowsky G, Bahtiar A, Koynov K, Bubeck C, Tillmann H, Hörhold HH, Pereira S (2002) Poly(p-phenylenevinylene) derivatives: new promising materials for nonlinear all-optical waveguide switching. J Opt Soc Am B 19:2250–2262

    Article  Google Scholar 

  • Baeg KJ, Kim J, Khim D, Caironi M, Kim DY, You IK, Quinn JR, Facchetti A, Noh YY (2011) Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits. ACS Appl Mater Inter 3:3205–3214

    Article  Google Scholar 

  • Baeg KJ, Caironi M, Noh YY (2013) Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors. Adv Mater 25:4210–4244

    Article  Google Scholar 

  • Baldo MA, Holmes RJ, Forrest SR (2002) Prospects for electrically pumped organic lasers. Phys Rev B 66:35321

    Article  Google Scholar 

  • Benor A, Knipp D (2008) Contact effects in organic thin film transistors with printed electrodes. Organic Electron 9:209–219

    Article  Google Scholar 

  • Benor A, Hoppe A, Wagner V, Knipp D (2007a) Microcontact printing and selective surface dewetting for large area electronic applications. Thin Solid Films 515:7679–7682

    Article  Google Scholar 

  • Benor A, Hoppe A, Wagner V, Knipp D (2007b) Electrical stability of pentacene thin-film transistors. Organic Electron 8:749–758

    Article  Google Scholar 

  • Bijleveld JC, Zoombelt AP, Mathijssen SGJ, Wienk MM, Turbiez M, de Leeuw DM, Janssen RAJ (2009) Poly(diketopyrrolopyrrole−terthiophene) for ambipolar logic and photovoltaics. J Am Chem Soc 131:16616–16617

    Article  Google Scholar 

  • Brabec C, Scherf U, Dyakonov V (2014) Organic photovoltaics: materials, device physics, and manufacturing technologies, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Chen BH, Wei JH, Lo PY, Wang HH, Lai MJ, Mj T, Chao TS, Lin HC, Huang TY (2006) A carbon nanotube field effect transistor with tunable conduction-type by electrostatic effects. Solid-State Electron 50:1241–1348

    Google Scholar 

  • Chen Z, Lemke H, Albert-Seifried S, Caironi M, Nielsen MM, Heeney M, Zhang W, McCulloch I, Sirringhaus H (2010) High mobility ambipolar charge transport in polyselenophene conjugated polymers. Adv Mater 22:2371–2375

    Article  Google Scholar 

  • Chen Z, Lee MJ, Ashraf RS, Gu Y, Albert-Seifried S, Nielsen MM, Schroeder B, Anthopoulos TD, Heeney M, McCulloch I, Sirringhaus H (2012) High-performance ambipolar diketopyrrolopyrrole-Thieno[3,2-b]thiophene copolymer field-effect transistors with balanced hole and electron mobilities. Adv Mater 24:647–652

    Article  Google Scholar 

  • Cicoira F, Santato C, Melucci M, Facaretto L, Gazzano M, Muccini M, Barbarella G (2006) Organic light-emitting transistors based on solution-cast and vacuum-sublimed films of a rigid core thiophene oligomer. Adv Mater 18:169–174

    Article  Google Scholar 

  • Conibeer GJ, Willoughby A (2014) Solar cell materials: developing technologies. Wiley, Chichester

    Book  Google Scholar 

  • Fan J, Yuen JD, Wang M, Seifter J, Seo JH, Mohebbi AR, Zakhidov D, Heeger A, Wudl F (2012) High-performance ambipolar transistors and inverters from an ultralow bandgap polymer. Adv Mater 24:2186–2190

    Article  Google Scholar 

  • Gather MC, Könen A, Meerholz K (2011) White organic light-emitting diodes. Adv Mater 23:233–248

    Article  Google Scholar 

  • Gelinck GH, Huitema HEA, van Veenendaal E, Cantatore E, Schrijnemakers L, van der Putten J, Geuns TCT, Beenhakkers M, Giesbers JB, Huisman BH, Meijer EJ, Benito EM, Touwslager FJ, Marsman AW, van Rens BJE, de Leeuw DM (2004) Flexible active matrix displays and shift registers based on solution-processed organic transistors. Nat Mater 3:106–110

    Article  Google Scholar 

  • Glowacki ED, Leonat L, Voss G, Bodea MA, Bozkurt Z, Ramil AM, Irimia-Vladu M, Bauer S, Sariciftci NS (2011) Ambipolar organic field effect transistors and inverters with the natural material Tyrian Purple. AIP Adv 1:042132

    Article  Google Scholar 

  • Hayashi Y, Kanamori H, Yamada I, Takasu A, Takagi S, Kaneko K (2005) Facile fabrication method for p/n-type and ambipolar transport polyphenylenevinylene-based thin-film field-effect transistors by blending C60 fullerene. Appl Phys Lett 86:052104

    Article  Google Scholar 

  • Heinze S, Radosavljevic M, Tersoff J, Avouris P (2003) Unexpected scaling of the performance of carbon nanotube Schottky-barrier transistors. Phys Rev B 68:235418

    Article  Google Scholar 

  • Hepp A, Heil H, Weise W, Ahles M, Schmechel R, von Seggern H (2003) Light-emitting field-effect transistors based on a tetracene thin film. Phys Rev Lett 91:157406

    Article  Google Scholar 

  • Hofmockel R, Zschieschang U, Kraft U, Rödel R, Hansen NH, Stolte M, Würthner F, Takimiya K, Kern K, Pflaum J, Klauk H (2013) High-mobility organic thin-film transistors based on a small-molecule semiconductor deposited in vacuum and by solution shearing. Organic Electron 14:3213–3221

    Article  Google Scholar 

  • Hoppe A, Knipp D, Gburek B, Benor A, Marinkovic M, Wagner V (2010) Scaling limits of organic thin film transistors. Organic Electron 11:626–631

    Article  Google Scholar 

  • Horowitz G (2010) Interfaces in organic field-effect transistors. Adv Polym Sci 223:113–153

    Google Scholar 

  • Inoue Y, Sakamoto Y, Suzuki T, Kobayashi M, Gao Y, Tokito S (2005) Organic thin-film transistors with high electron mobility based on perfluoropentacene. Jpn J Appl Phys 44:3663–3668

    Article  Google Scholar 

  • Inoue A, Okamoto T, Sakai M, Kuniyoshi S, Yamauchi H, Nakamura M, Kudo K (2013) Flexible organic field-effect transistors fabricated by thermal process. Phys Status Solidi A 210:1353–1357

    Article  Google Scholar 

  • Irimia-Vladu M, Glowacki ED, Troshin PA, Schwabegger G, Leonat L, Susarova DK, Krystal O, Ullah M, Kanbur Y, Bodea MA, Razumov VF, Sitter H, Bauer S, Sariciftci NS (2012) Indigo – a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv Mater 24:375–380

    Article  Google Scholar 

  • Jamaa MHB, Atienza D, Leblebici Y, De Micheli G (2008) Programmable logic circuits based on ambipolar CNFET. In: Proceedings of the design automation conference Anaheim, CA, pp 339–340

    Google Scholar 

  • Javey A, Guo J, Farmer DB, Wang Q, Wang D, Gordon RG, Lundstrom M, Dai H (2004) Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics. Nano Lett 4:447–450

    Article  Google Scholar 

  • Kajii H, Taneda T, Ohmori Y (2003) Organic light-emitting diode fabricated on a polymer substrate for optical links. Thin Solid Films 438:334–338

    Article  Google Scholar 

  • Kang SM, Leblebici Y (2003) CMOS Digital integrated circuits: analysis and design. McGraw-Hill, Tata

    Google Scholar 

  • Kitamura M, Arakawa Y (2009) Current-gain cutoff frequencies above 10 MHz for organic thin-film transistors with high mobility and low parasitic capacitance. Appl Phys Lett 95:023503

    Article  Google Scholar 

  • Klauk H (2006) Organic electronics: materials, manufacturing, and applications. Wiley, Germany

    Book  Google Scholar 

  • Knipp D, Northrup JE (2009) Electric-field induced gap states in pentacene. Adv Mater 21:2511–2515

    Article  Google Scholar 

  • Knipp D, Chan KY, Gordijn A, Marinkovic M, Stiebig H (2011) Ambipolar charge transport in microcrystalline silicon thin-film transistors. J Appl Phys 109:024504

    Article  Google Scholar 

  • Kronemeijer AJ, Gili E, Shahid M, Rivnay J, Salleo A, Heeney M, Sirringhaus H (2012) A Selenophene-based low-bandgap donor–acceptor polymer leading to fast ambipolar logic. Adv Mater 24:1558–1565

    Article  Google Scholar 

  • Kuik M, Wetzelaer GJAH, Nicolai HT, Craciun NI, De Leeuw DM, Blom PWM (2014) 25th Anniversary article: charge transport and recombination in polymer light-emitting diodes. Adv Mater 26:512–531

    Article  Google Scholar 

  • Lee J, Han AR, Kim J, Kim Y, Oh JH, Yang C (2012) Solution-processable ambipolar diketopyrrolopyrrole-selenophene polymer with unprecedentedly high hole and electron mobilities. J Am Chem Soc 134:20713–20721

    Article  Google Scholar 

  • Lei T, Dou JH, Ma ZJ, Yao CH, Liu CJ, Wang JY, Pei J (2012) Ambipolar polymer field-effect transistors based on fluorinated isoindigo: high performance and improved ambient stability. J Am Chem Soc 134:20025–20028

    Article  Google Scholar 

  • Lemme MC, Echtermeyer TJ, Baus M, Kurz H (2007) A Graphene field-effect device. IEEE Electron Device Lett 28:282–284

    Article  Google Scholar 

  • Li J, Zhang Q, Chan-Park MB (2006) Simulation of carbon nanotube based p-n junction diodes. Carbon 44:3087–3090

    Article  Google Scholar 

  • Li J, Zhao Y, Tan HS, Guo Y, Di CA, Yu G, Liu Y, Lin M, Lim SH, Zhou Y, Su H, Ong BS (2012) A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci Rep 2:754

    Google Scholar 

  • Liang Z, Tang Q, Mao R, Liu D, Xu J, Miao Q (2011) The position of nitrogen in N-Heteropentacenes matters. Adv Mater 23:5514–5518

    Article  Google Scholar 

  • Liao L, Bai J, Qu Y, Lin YC, Li Y, Huang Y, Duan X (2010) High-κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. Proc Natl Acad Sci U S A 107:6711–6715

    Article  Google Scholar 

  • Lin YM, Appenzeller J, Avouris P (2004) Ambipolar-to-unipolar conversion of carbon nanotube transistors by gate structure engineering. Nano Lett 4:947–950

    Article  Google Scholar 

  • Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327:662

    Article  Google Scholar 

  • Loi MA, Rost-Bietsch C, Murgia M, Karg S, Riess W, Muccini M (2006) Tuning optoelectronic properties of ambipolar organic light-emitting transistors using a bulk-heterojunction approach. Adv Funct Mater 16:41–47

    Article  Google Scholar 

  • McCall KL, Rutter SR, Bone EL, Forrest ND, Bissett JS, Jones JDE, Simms MJ, Page AJ, Fisher R, Brown BA, Ogier SD (2014) High performance organic transistors using small molecule semiconductors and high permittivity semiconducting polymers. Adv Funct Mater 24:3067–3074

    Article  Google Scholar 

  • Meijer EJ, De Leeuw DM, Setayesh S, van Veenendaal E, Huisman B-H, Blom PWM, Hummelen JC, Scherf U, Klapwijk TM (2003) Solution-processed ambipolar organic field-effect transistors and inverters. Nat Mater 2:678–682

    Article  Google Scholar 

  • Melzer C, von Seggern H (2010) Organic field-effect transistors for CMOS devices. Adv Polym Sci 223:213–257

    Google Scholar 

  • Menard E, Podzorov V, Hur SH, Gaur A, Gershenson ME, Rogers JA (2004) High-performance n- and p-type single-crystal organic transistors with free-space gate dielectrics. Adv Mater 16:23–24

    Article  Google Scholar 

  • Nakanotani H, Saito M, Nakamura H, Adachi C (2009) Tuning of threshold voltage by interfacial carrier doping in organic single crystal ambipolar light-emitting transistors and their bright electroluminescence. Appl Phys Lett 95:103307

    Article  Google Scholar 

  • Nakanotani H, Higuchi T, Furukawa T, Masui K, Morimoto K, Numata M, Tanaka H, Sagara Y, Yasuda T, Adachi C (2014) High-efficiency organic light-emitting diodes with fluorescent emitters. Nat Commun 5:4016

    Article  Google Scholar 

  • Nomoto K, Noda M, Kobayashi N, Katsuhara M, Yumoto A, Ushikura S, Yasuda R, Hirai N, Yukawa G, Yagi I (2011) Rollable OLED display driven by organic TFTs. SID Symp Digest 42:488–491

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  • O’Connor I, Liu J, Gaffiot F, Pregaldiny F, Lallement C, Maneux C, Goguet J, Fregonese S, Zimmer T, Anghel L, Dang TT, Leveugle R (2007) CNTFET modeling and reconfigurable logic-circuit design. IEEE Trans Circuits Systems I 54:2365–2379

    Article  Google Scholar 

  • Opitz A, Horlet M, Kiwull M, Wagner J, Kraus M, Brütting W (2012) Bipolar charge transport in organic field-effect transistors: enabling high mobilities and transport of photo-generated charge carriers by a molecular passivation layer. Organic Electron 13:1614–1622

    Article  Google Scholar 

  • Risteska A, Chan KY, Anthopoulos TD, Gordijn A, Stiebig H, Nakamura M, Knipp D (2012) Designing organic and inorganic ambipolar thin-film transistors and inverters: theory and experiment. Organic Electron 13:2816–2824

    Article  Google Scholar 

  • Risteska A, Myny K, Steudel S, Nakamura M, Knipp D (2014) Scaling limits of organic digital circuits. Organic Electron 15:461–469

    Article  Google Scholar 

  • Rost C, Karg S, Riess W, Loi MA, Murgia M, Muccini M (2004) Ambipolar light-emitting organic field-effect transistor. Appl Phys Lett 85:1613–1615

    Article  Google Scholar 

  • Schidleja M, Melzer C, von Seggern H (2009) Electroluminescence from a pentacene based ambipolar organic field-effect transistor. Appl Phys Lett 94:123307

    Article  Google Scholar 

  • Schmechel R, Ahles M, von Seggern H (2005) A pentacene ambipolar transistor: experiment and theory. J Appl Phys 98:084511

    Article  Google Scholar 

  • Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496

    Article  Google Scholar 

  • Sekitanu T, Someya T (2010) Stretchable, large-area organic electronics. Adv Mater 22:2228–2246

    Article  Google Scholar 

  • Singh TB, Senkarabacak P, Sariciftci NS, Tanda A, Lackner C, Hagelauer R, Horowitz G (2006) Organic inverter circuits employing ambipolar pentacene field-effect transistors. Appl Phys Lett 89:033512

    Article  Google Scholar 

  • Smits ECP, Anthopoulos TD, Setayesh S, van Veenendaal E, Coehoorn R, Blom PWM, de Boer B, de Leeuw DM (2006) Ambipolar charge transport in organic field-effect transistors. Phys Rev B 73:205316

    Article  Google Scholar 

  • Sonar P, Singh SP, Li Y, Soh MS, Dodabalapur A (2010) A low-bandgap diketopyrrolopyrrole-benzothiadiazole-based copolymer for high-mobility ambipolar organic thin-film transistors. Adv Mater 22:5409–5413

    Article  Google Scholar 

  • Sonar P, Foong TRB, Singh SP, Li Y, Dodabalapur A (2012) A furan- containing conjugated polymer for high mobility ambipolar organic thin film transistors. Chem Commun 48:8383–8385

    Article  Google Scholar 

  • Song CL, Ma CB, Yang F, Zeng WJ, Zhang HL, Gong X (2011) Synthesis of tetrachloro-azapentacene as ambipolar organic semiconductor with high and balanced carrier mobilities. Org Lett 13:2880–2883

    Article  Google Scholar 

  • Sun Y, Welch GC, Leong WL, Takacs CJ, Bazan GC, Heeger AJ (2012) Solution-processed small-molecule solar cells with 6.7% efficiency. Nat Mater 11:44–48

    Article  Google Scholar 

  • Takahashi T, Takenobu T, Takeya J, Iwasa Y (2006) Ambipolar organic field-effect transistors based on rubrene single crystals. Appl Phys Lett 88:033505

    Article  Google Scholar 

  • Tang ML, Reichardt AD, Miyaki N, Stoltenberg RM, Bao Z (2008) Ambipolar, high performance, acene-based organic thin film transistors. J Am Chem Soc 130:6064–6065

    Article  Google Scholar 

  • Tessler N, Pinner DJ, Cleave V, Ho PKH, Friend RH, Yahioglu G, Le Barny P, Gray J, de Souza M, Rumbles G (2000) Properties of light emitting organic materials within the context of future electrically pumped lasers. Synth Met 115:57–62

    Article  Google Scholar 

  • Unni KNN, Pandey AK, Nunzi JM, Alem S (2006) Ambipolar organic field-effect transistor fabricated by co-evaporation of pentacene and N, N' -ditridecylperylene −3, 4, 9, 10-tetracarboxylic diimide. Chem Phys Lett 421:554–557

    Article  Google Scholar 

  • Wakayama Y, Hayakawa R, Seo HS (2014) Recent progress in photoactive organic field-effect transistors. Sci Technol Adv Mater 15:024202

    Article  Google Scholar 

  • Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009a) N-doping of graphene through electrothermal reactions with ammonia. Science 324:768–771

    Article  Google Scholar 

  • Wang H, Nezich D, Kong J, Palacios T (2009b) Graphene frequency multipliers. IEEE Electron Device Lett 30:547–549

    Article  Google Scholar 

  • Yang CY, Cheng SS, Ou CW, Chuang YC, Wu MC, Dhananjay CCW (2008) Realization of ambipolar pentacene thin film transistors through dual interfacial engineering. J Appl Phys 103:094519

    Article  Google Scholar 

  • Yasuda T, Goto T, Fujita K, Tsutsui T (2004) Ambipolar pentacene field-effect transistors with calcium source-drain electrodes. Appl Phys Lett 85:2098

    Article  Google Scholar 

  • Yeap KH (2011) Fundamentals of digital integrated circuit design. AuthorHouse, Central Milton Keynes

    Google Scholar 

  • Yu WJ, Kim UJ, Kang BR, Lee IH, Lee EH, Lee YH (2009) Adaptive logic circuits with doping-free ambipolar carbon nanotube transistors. Nano Lett 9:1401–1405

    Article  Google Scholar 

  • Yuen JD, Fan J, Seifter J, Lim B, Hufschmid R, Heeger AJ, Wudl F (2011) High performance weak donor–acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability. J Am Chem Soc 133:20799–20807

    Article  Google Scholar 

  • Zaumseil J, Sirringhaus H (2007) Electron and ambipolar transport in organic field-effect transistors. Chem Rev 107:1296–1323

    Article  Google Scholar 

  • Zaumseil J, Donley CL, Kim JS, Friend RH, Sirringhaus H (2006a) Efficient top-gate, ambipolar, light-emitting field-effect transistors based on a green-light-emitting polyfluorene. Adv Mater 18:2708–2712

    Article  Google Scholar 

  • Zaumseil J, Friend RH, Sirringhaus H (2006b) Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nat Mater 5:69–74

    Article  Google Scholar 

  • Zeng WJ, Zhou XY, Pan XJ, Song CL, Zhang HL (2013) High performance CMOS-like inverter based on an ambipolar organic semiconductor and low cost metals. AIP Advances 3:012101

    Article  Google Scholar 

  • Zhao X, Pei T, Cai B, Zhou S, Tang Q, Tong Y, Tian H, Geng Y, Liu Y (2014) High ON/OFF ratio single crystal transistors based on ultrathin thienoacene microplates. J Mater Chem C 2:5382

    Article  Google Scholar 

  • Zhou LS, Wanga A, Wu SC, Sun J, Park S, Jackson TN (2006) All-organic active matrix flexible display. Appl Phys Lett 88:083502

    Article  Google Scholar 

  • Zhou J, Zuo Y, Wan X, Long G, Zhang Q, Ni W, Liu Y, Li Z, He G, Li C, Kan B, Li M, Chen Y (2013) Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit. J Am Chem Soc 135:8484–8487

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Knipp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Risteska, A., Knipp, D. (2016). Organic Ambipolar Transistors and Circuits. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-14346-0_177

Download citation

Publish with us

Policies and ethics