Skip to main content

Trajectory Control of Manipulators Using an Adaptive Parametric Type-2 Fuzzy CMAC Friction and Disturbance Compensator

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 586))

Abstract

Friction and disturbances have an important influence on the robot manipulator dynamics. They are highly nonlinear terms that cannot be easily modeled. In this investigation an incrementally tuned parametric type-2 fuzzy cerebellar model articulation controller (P-T2FCMAC) neural network is proposed for compensation of friction and disturbance effects during the trajectory tracking control of rigid robot manipulators. CMAC networks have been widely applied to problems involving modeling and control of complex dynamical systems because of their computational simplicity, fast learning and good generalization capability. The integration of fuzzy logic systems and CMAC networks into fuzzy CMAC structures helps to improve their function approximation accuracy in terms of the CMAC weighting coefficients. Type-2 fuzzy logic systems are an area of growing interest over the last years since they are able to model uncertainties and to perform under noisy conditions in a better way than type-1 fuzzy systems. The proposed intelligent compensator makes use of a newly developed stable variable structure systems theory-based learning algorithm that can tune on-line the parameters of the membership functions and the weights in the fourth and fifth layer of the P-T2FCMAC network. Simulation results from the trajectory tracking control of two degrees of freedom RR planar robot manipulator using feedback linearization techniques and the proposed adaptive P-T2FCMAC neural compensator have shown that the joint positions are well controlled under wide variation of operation conditions and existing uncertainties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Ahmed, K. Shiev, A.V. Topalov, N. Shakev, O. Kaynak, Sliding mode online learning algorithm for type-2 fuzzy CMAC networks, in Proceedings of the 9th Asia Control Conference, Istanbul, Turkey (to be published) (2013)

    Google Scholar 

  2. J.S. Albus, A new approach to manipulator control: the cerebellar model articulation controller (CMAC). ASME J. Dyn. Syst. Measur. Control, 220–227 (1975)

    Google Scholar 

  3. J.S. Albus, Data storage in the cerebellar model articulation controller (CMAC). ASME J. Dyn. Systems, Measur. Control, 228–233 (1975)

    Google Scholar 

  4. M. Biglarbegian, W. Melek, J.M. Mendel, On the stability of interval type-2 TSK fuzzy logic control systems. Syst. Man Cybern. Part B Cybern. IEEE Trans. 40(3), 798–818 (2010)

    Article  Google Scholar 

  5. C.S. Chen, Sliding-mode-based fuzzy CMAC controller design for a class of uncertain nonlinear systems, in Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernitics, San Antonio, USA, pp. 3030–3034 (2009)

    Google Scholar 

  6. J.Y. Chen, P.S. Tsai, C.C. Wong, Adaptive design of a fuzzy cerebellar model arith-metic controller neural network. IEE Proc. Control Theory Appl. 152(6), 133–137 (2005)

    Article  Google Scholar 

  7. K.H. Cheng, CMAC-based neuro-fuzzy approach for complex system modeling. Neurocomputing 72, 1763–1774 (2009)

    Article  Google Scholar 

  8. M.A. Costa, A.P. Braga, B.R. Menezes, Improving generalization of MLPs with sliding mode control and the Levenberg-Marquardt algorithm. Neurocomputing 70(7–9), 1342–1347 (2007)

    Article  Google Scholar 

  9. E.G. Gilbert, I.J. Ha, An approach to nonlinear feedback control with applications to robotics. IEEE Trans. Syst. Man Cybern. 14(6), 879–884 (1984)

    Google Scholar 

  10. H.A. Hagras, A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. Fuzzy Syst. 12(4), 524–539 (2004). doi:10.1109/TFUZZ.2004.832538

    Article  Google Scholar 

  11. V.M. Hung, U.J. Na, Adaptive neural fuzzy control for robot manipulator friction and disturbance compensator, in International Conference on Control, Automation and Systems 2008, COEX, Seoul, Korea, pp. 2569–2574, 14–17 Oct 2008

    Google Scholar 

  12. L.R. Hunt, R. Su, G. Meyer, Global transformations of nonlinear systems. IEEE Trans. Autom. Control 28(1), 24–31 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. K.S. Hwang, C.S. Lin, Smooth trajectory tracking of three-link robot: a self-organizing CMAC approach. IEEE Trans. Syst. Man Cybern. B 28, 680–692 (1998)

    Article  Google Scholar 

  14. M.A. Khanesar, E. Kayacan, M. Teshnehlab, O. Kaynak, Analysis of the noise reduction property of type-2 fuzzy logic systems using a novel type-2 membership function. IEEE Trans. Syst. Man Cybern. 41(5), 1395–1405 (2011)

    Article  Google Scholar 

  15. S.H. Lane, D.A. Handelman, J.J. Gelfand, Theory and development of higher-order CMAC neural networks. IEEE Contr. Syst. Mag. 12, 23–30 (1992)

    Article  Google Scholar 

  16. C.H. Lee, C.C. Teng, Identification and control of dynamic systems using recurrent fuzzy neural network. IEEE Trans. Fuzzy Syst. 8, 349–366 (2000)

    Article  Google Scholar 

  17. F.L. Lewis, J. Campus, R. Semic, Neuro-Fuzzy Control of Industrial Systems with Actuator Nonlinearities (SIAM, Philadelphia, 2002)

    Book  MATH  Google Scholar 

  18. F.L. Lewis, D.M. Dawson, C.T. Abdallah, Robot Manipulator Control. Theory and Practice, 2nd edn. (Marcel Dekker, Inc., New York, Basel, 2004)

    Google Scholar 

  19. F.L. Lewis, S. Jagannathan, A. Yesildirek, Neural Network Control of Robot Manipulators and Nonlinear Systems (Taylor & Francis, London, Philadelphia, 1999)

    Google Scholar 

  20. Z. Man, H.R. Wu, S. Liu, X. Yu, A new adaptive back-propagation algorithm based on Lyapunov stability theory for neural networks. IEEE Trans. Neural Netw. 17(6), 1580–1591 (2006)

    Article  Google Scholar 

  21. J.M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions (Prentice-Hall, Englewood Cliffs, 2001)

    Google Scholar 

  22. J.M. Mendel, R. John, Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)

    Article  Google Scholar 

  23. K. Shiev, N. Shakev, A.V. Topalov, S. Ahmed, Trajectory control of manipulators using type-2 fuzzy neural friction and disturbance compensator, in Intelligent Systems (IS), 2012 6th IEEE International Conference, pp. 324–329 (2012). doi:10.1109/IS.2012.6335155

  24. A.V. Topalov, A new stable on-line learning for takagi-sugeno-kang type neuro-fuzzy networks. Comptes rendus de l’Academie bulgare des Sciences 64(10), 1489–1498 (2011)

    Google Scholar 

  25. V.I. Utkin, Sliding Modes in Control and Optimization (Springer, Berlin, 1992)

    Book  MATH  Google Scholar 

  26. T.F. Wu, P.S. Tsai, F.R. Chang, L.S. Wang, Adaptive fuzzy CMAC control for a class of nonlinear systems with smooth compensation. IEE Proc. Control Theory Appl. 153(6), 647–657 (2006)

    Article  Google Scholar 

  27. W. Yu, X. Li, Fuzzy identification using fuzzy neural networks with stable learning algorithms. IEEE Trans. Fuzzy Syst. 12(3), 411–420 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostadin Shiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shiev, K., Ahmed, S., Shakev, N., Topalov, A.V. (2016). Trajectory Control of Manipulators Using an Adaptive Parametric Type-2 Fuzzy CMAC Friction and Disturbance Compensator. In: Hadjiski, M., Kasabov, N., Filev, D., Jotsov, V. (eds) Novel Applications of Intelligent Systems. Studies in Computational Intelligence, vol 586. Springer, Cham. https://doi.org/10.1007/978-3-319-14194-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14194-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14193-0

  • Online ISBN: 978-3-319-14194-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics