Skip to main content

Complex Network Analysis in Socioeconomic Models

  • Chapter
  • First Online:
Complexity and Geographical Economics

Part of the book series: Dynamic Modeling and Econometrics in Economics and Finance ((DMEF,volume 19))

Abstract

This chapter aims at reviewing complex network models and methods that were either developed for or applied to socioeconomic issues, and pertinent to the theme of New Economic Geography. After an introduction to the foundations of the field of complex networks, the present summary adds insights on the statistical mechanical approach, and on the most relevant computational aspects for the treatment of these systems. As the most frequently used model for interacting agent-based systems, a brief description of the statistical mechanics of the classical Ising model on regular lattices, together with recent extensions of the same model on small-world Watts–Strogatz and scale-free Albert-Barabási complex networks is included. Other sections of the chapter are devoted to applications of complex networks to economics, finance, spreading of innovations, and regional trade and developments. The chapter also reviews results involving applications of complex networks to other relevant socioeconomic issues, including results for opinion and citation networks. Finally, some avenues for future research are introduced before summarizing the main conclusions of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The word was first coined by Siey’s in 1780 (Guilhaumou 2006).

References

  • Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47–97.

    Google Scholar 

  • Almeida-Neto, M., Guimarães, P., Guimarães, P. R., Jr., Loyola, R. D., & Ulrich, W. (2008). A consistent metric for nestedness analysis in ecological systems: Reconciling concept and measurement. Oikos, 117, 1227–1239.

    Google Scholar 

  • Amaral, L., Buldyrev, S. V., Havlin, S., Leschhorn, H., Maass, P., Salinger, M. A., Stanley, H. E., & Stanley, M. H. R. (1997a). Scaling behavior in economics: I. Empirical results for company growth. Journal de Physique I, 7, 621–633.

    Google Scholar 

  • Amaral, L., Buldyrev, S. V., Havlin, S., Leschhorn, H., Maass, P., Salinger, M. A., Stanley, H. E., & Stanley, M. H. R. (1997b). Scaling behavior in economics: II. Modeling of company growth. Journal de Physique I, 7, 635–650.

    Google Scholar 

  • Araujo, A. I. L., Corso, G., Almeida, A. M., & Lewinsohn, T. M. (2010). An analytic approach to the measurement of nestedness in bipartite networks. Physica A, 389, 1405–1411.

    Google Scholar 

  • Arthur W. B. (2006). Out-of-equilibrium economics and agent-based modelling. Handbook of Computational Economics, 2, 1551–1564.

    Google Scholar 

  • Ausloos, M., & Lambiotte, R. (2007a). Clusters or networks of economies? A macroeconomy study through GDP fluctuation correlations. Physica A, 382, 16–21.

    Google Scholar 

  • Ausloos, M., & Lambiotte, R. (2007b). Drastic events make evolving networks. European Physical Journal B, 57, 89–94.

    Google Scholar 

  • Ausloos, M., Lambiotte, R., Scharnhorst, A., & Hellsten, I. (2008). Andrzej Pekalski networks of scientific interests with internal degrees of freedom through self-citation analysis. International Journal of Modern Physics C, 19, 371–384.

    Google Scholar 

  • Ausloos, M., Dawid, H., & Merlone, U. (2014). Spatial interactions in agent-based models. In P. Commendatore, S. Kayam, & I. Kubin (Eds.), Complexity and geographical economics: Topics and tools. Heidelberg: Springer.

    Google Scholar 

  • Avrutin, V., Levi, P., Schanz, M., Fundinger, D., & Osipenko, G. S. (2006). Growing network with j-redirection. International Journal of Bifurcation and Chaos, 16, 3451–3496.

    Google Scholar 

  • Axtell, R. L. (2001). Zipf distribution of U.S. firm sizes. Science, 293, 1818–1820.

    Google Scholar 

  • Bala, V., & Goyal, S. (2000). A noncooperative model of network formation. Econometrica, 68, 1181–1229.

    Google Scholar 

  • Barabási, A. L. (2003). Linked how everything is connected to everything else and what it means for business, science, and everyday life. New York: Plume Books.

    Google Scholar 

  • Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509–512.

    Google Scholar 

  • Barigozzi, M., Fagiolo, G., & Mangioni, G. (2011). Community structure in the multi-network of international trade complex networks. Communications in Computer and Information Science, 116, 163–175.

    Google Scholar 

  • Barkley Rosser, J., Jr. (1999). On the complexities of complex economic dynamics. The Journal of Economic Perspectives, 13, 169–192.

    Google Scholar 

  • Barrat, A., & Weigt, M. (2000). On the properties of small-world network models. European Physical Journal B, 13, 547–560.

    Google Scholar 

  • Barrat, A., Barthélemy, M., Pastor-Satorras, R., & Vespignani, A. (2004). The architecture of complex weighted networks. Proceedings of the National Academy of Sciences, 101, 3747–3752.

    Google Scholar 

  • Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. In International AAAI Conference on Weblogs and Social Media.

    Google Scholar 

  • Batagelj, V., & Mrva, A. (2003). Pajek-analysis and visualization of large networks. In M. Jünger & P. Mutzel (Eds.), Graph drawing software (pp. 77–103). Berlin: Springer.

    Google Scholar 

  • Beckman, M. (1952). A continuous model of transportations. Econometrica, 20, 643–660.

    Google Scholar 

  • Bernasconi, M., & Galizzi, M. (2010). Network formation in repeated interactions: Experimental evidence on dynamic behaviour. Mind Society, 9, 193–228.

    Google Scholar 

  • Bertoni, F., & Randone, P. A. (2006). The small-world of Italian finance: Ownership interconnections and board interlocks amongst Italian listed companies. Technical Report Politecnico di Milano.

    Google Scholar 

  • Bhattacharya, K., Mukherjee, G., Saramaki, J., Kaski, K., & Manna, S. S. (2008). The international trade network. In Econophysics of markets and business networks, new economic windows series (pp. 139–147). Berlin: Springer.

    Google Scholar 

  • Bianconi, G. (2002). Mean-field solution of the Ising model on a Barabási-Albert network. Physics Letters A, 303, 166–168.

    Google Scholar 

  • Bischi, G. I., & Lamantia, F. (2012a). A dynamic model of oligopoly with R&D externalities along networks. Part I. Mathematics and Computers in Simulation, 84, 51–65.

    Google Scholar 

  • Bischi, G. I., & Lamantia, F. (2012b). A dynamic model of oligopoly with R&D externalities along networks. Part II. Mathematics and Computers in Simulation, 84, 66–82.

    Google Scholar 

  • Bischi, G. I., & Merlone, U. (2010). Global dynamics in adaptive models of collective choice with social influence. In G. Naldi (Ed.), Mathematical modelling of collective behavior in socio−economic and life sciences (Vol. 223–244). Berlin: Springer.

    Google Scholar 

  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424, 175–308.

    Google Scholar 

  • Boguñá, M., & Pastor-Satorras, R. (2002). Epidemic spreading in correlated complex networks. Physical Review E, 66, 047104.

    Google Scholar 

  • Boguñá, M., Pastor-Satorras, R., Díaz-Guilera, A., & Arenas, A. (2004). Models of social networks based on social distance attachment. Physical Review E, 70, 056122.

    Google Scholar 

  • Bonanno, G., Caldarelli, G., Lillo, F., Micciché, S., Vandewalle, N., & Mantegna, R. N. (2004). Networks of equities in financial markets. European Physical Journal B, 38, 363–371.

    Google Scholar 

  • Bougheas, S., & Kirman, A. (2015). Complex financial networks and systemic risk: A review. In P. Commendatore, S. Kayam, & I. Kubin (Eds.), Complexity and geographical economics: Topics and tools. Heidelberg: Springer

    Google Scholar 

  • Caldarelli, G., Lillo, F., & Mantegna, R. N. (2003). Topology of correlation-based minimal spanning trees in real and model markets. Physical Review E, 68, 046130.

    Google Scholar 

  • Caldarelli, G., Battiston, S., Garlaschelli, D., & Catanzaro, M. (2004). Emergence of complexity in financial networks. Lecture Notes in Physics: Complex Networks, 650, 399–423.

    Google Scholar 

  • Caldarelli, G., Chessa, A., Gabrielli, A., Pammolli, F., & Puliga, M. (2013). Reconstructing a credit network. Nature Physics, 9, 119–197.

    Google Scholar 

  • Catanzaro, M., & Buchanan, M. (2013). Network opportunity. Nature Physics, 9, 121–122.

    Google Scholar 

  • Cayley, J. (1889). A theorem on trees. The Quarterly Journal of Mathematics, 23, 376–378.

    Google Scholar 

  • Cerqueti, R., & Rotundo, G. (2007). Productivity and costs for firms in presence of technology renewal processes. International Transactions in Operational Research, 14, 521–534.

    Google Scholar 

  • Cerqueti, R., & Rotundo, G. (2009). Companies’ decisions for profit maximization: A structural model. Applied Mathematical Sciences, 3, 1327–1340.

    Google Scholar 

  • Cerqueti, R., & Rotundo, G. (2010a). Options with underlying asset driven by a fractional brownian motion: Crossing barriers estimates. New Mathematics and Natural Computation, 6, 109–118.

    Google Scholar 

  • Cerqueti, R., & Rotundo, G. (2010b). Firms clustering in presence of technological renewal processes. In T. Puu, & A. Panchuk (Eds.), Nonlinear economic dynamics. New York: Nova Science Publishers.

    Google Scholar 

  • Chakrabarti, B. K., Chakraborti, A., & Chatterjee, A. (2007). Econophysics and sociophysics; Trends and perspectives. Weinheim: Wiley.

    Google Scholar 

  • Colander, D., Holt, R., & Barkley Rosser J., Jr., (2004). The changing face of mainstream economics. Review of Political Economy, 16, 485–499.

    Google Scholar 

  • Comte, A. (1852). Cour de philosophie positive. Paris: Borrani et Droz.

    Google Scholar 

  • Comte, A. (1995). Leçons sur la sociologie: Cour de philosophie positive: leçons 47 à 51. Paris: Juliette Grange Flammarion.

    Google Scholar 

  • Copic, J., Jackson, M. O., & Kirman, A. (2009). Identifying community structures from network data via maximum likelihood methods. The B.E. Journal of Theoretical Economics, 9, 1–40.

    Google Scholar 

  • da Costa, L. F., Rodrigues, F. A., Travieso, G., & Villas Boas, P. R. (2007). Characterization of complex networks: A survey of measurements. Advances in Physics, 56, 167–242.

    Google Scholar 

  • da Costa, L. F., Oliveira, O. N., Jr., Travieso, G., Rodrigues, F. A., Ribeiro Villas Boas, P., Antiqueira, L., Palhares Viana, M., & Correa Rocha, L. E. (2011). Advances in Physics, 60, 329–412.

    Google Scholar 

  • Cotilla-Sanchez, E., Hines, P. D. H., Barrows, C., & Blumsack, S. (2012). Comparing the topological and electrical structure of the North American electric power infrastructure. IEEE Systems Journal, 6, 616–626.

    Google Scholar 

  • Croci, E., & Grassi, R. (2013). The economic effect of interlocking directorates in Italy: New evidence using centrality measures. Computational and Mathematical Organization Theory, 20, 89–112.

    Google Scholar 

  • da Cruz, J. P., & Lind, P. G. (2012). The dynamics of financial stability in complex networks. European Physical Journal B, 85, 256–265.

    Google Scholar 

  • Dal Forno, A., & Merlone, U. (2007). The evolution of coworkers networks: An experimental and computational approach. In B. Edmonds, C. H. Iglesias, & K. G. Troitzsch (Eds.), Social simulation: Technologies, advances and new discoveries (pp. 280–293). Hershey (PA): Information Science Reference.

    Google Scholar 

  • Dal Forno, A., & Merlone, U. (2008). Network dynamics when selecting work team member. In A. K. Naimzada, S. Stefani, & A. Torriero (Eds.), Networks, topology and dynamics theory and applications to economics and social systems. Lecture notes in economics and mathematical systems (Vol. 613, pp. 229–240). Berlin: Springer.

    Google Scholar 

  • Dal Forno, A., & Merlone, U. (2009). Social entrepreneurship effects on the emergence of cooperation in networks. Emergence: Complexity and Organization, 11, 48–58.

    Google Scholar 

  • D’Errico, M., Grassi, R., Stefani, S., & Torriero, A. (2008). Shareholding networks and centrality: an application to the Italian financial market. In A. Naimzada, S. Stefani, & A. Torriero (Eds.), Network, topology and dynamics. Theory and applications to economics and social systems (pp. 215–228). Berlin: Springer.

    Google Scholar 

  • Djikstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271.

    Google Scholar 

  • Dorogovtsev, S. N., & Mendes, J. F. F. (2003). Evolution of networks - from biological nets to the internet and WWW. Oxford: Oxford University Press.

    Google Scholar 

  • Erdös, P., & Rényi, A. (1959). On random graphs I. Publications Mathematicae, 6, 290–297.

    Google Scholar 

  • Euler, L. (1736). Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Imperialis Petropolitanae, 8, 128–140.

    Google Scholar 

  • Fagiolo, G., Reyes, J., & Schiavo, S. (2008). On the topological properties of the world trade web: A weighted network analysis. Physica A, 387, 3868–3873.

    Google Scholar 

  • Foster, J. (2005). From simplistic to complex systems in economics. Cambridge Journal of Economics, 29, 873–892.

    Google Scholar 

  • Friedman, L. (1977). A set of measures of centrality based on betweenness. Sociometry, 40, 35–41.

    Google Scholar 

  • Fronczak, A., & Fronczak, P. (2012). Statistical mechanics of the international trade network. Physical Review E, 85, 056113.

    Google Scholar 

  • Fujiwara, Y., & Aoyama, H. (2010). Large-scale structure of a nation-wide production network. European Physical Journal B, 77, 565–580.

    Google Scholar 

  • Galam, S. (2008). Sociophysics: A review of Galam models. International Journal of Modern Physics C, 19, 409–440.

    Google Scholar 

  • Galam, S. (2012). What is sociophysics about? Berlin: Springer.

    Google Scholar 

  • Galbiati, M., Battiston, S., & Delpini, D. (2013). The power to control. Nature Physics, 9, 126–128.

    Google Scholar 

  • Garas, A., Argyrakis, P., Rozenblat, C., Tomassini, M., & Havlin, S. (2010). Worldwide spreading of economic crisis. New Journal of Physics, 12, 113043.

    Google Scholar 

  • Garas, A., Schweitzer, F., & Havlin, S. (2012). A k-shell decomposition method for weighted networks. New Journal of Physics, 14, 083030.

    Google Scholar 

  • Garlaschelli, D., & Loffredo, M. I. (2005). Structure and evolution of the world trade network. Physica A, 355, 138–144.

    Google Scholar 

  • Gilbert, E. N. (1959). Random graphs. Annals of Mathematical Statistics, 4, 1141–1144.

    Google Scholar 

  • Gitterman, M. (2000). Small-world phenomena in physics: The Ising model. Journal of Physics A, 33, 8373–8381.

    Google Scholar 

  • Gligor, M., & Ausloos, M. (2007). Cluster structure of EU-15 countries derived from the correlation matrix analysis of macroeconomic index fluctuations. European Physical Journal B, 57, 139–146.

    Google Scholar 

  • Gligor, M., & Ausloos, M. (2008a). Cluster expansion method for evolving weighted networks having vector-like nodes. Acta Physica Polonica A, 114, 491–499.

    Google Scholar 

  • Gligor, M., & Ausloos, M. (2008b). Clusters in weighted macroeconomic networks: The EU case. Introducing the overlapping index of gdp/capita fluctuation correlations. European Physical Journal B, 63, 533–539.

    Google Scholar 

  • Gligor, M., & Ausloos, M. (2008c). Convergence and cluster structures in EU area according to fluctuations in macroeconomic indices. Journal of Economic Integration, 23, 297–330.

    Google Scholar 

  • Goodwin, B. C. (1965). Oscillatory behaviour in enzymatic control processes. Advances in Enzyme Regulation, 3, 425–438.

    Google Scholar 

  • Grassi, R. (2010). Vertex centrality as a measure of information flow in Italian corporate board networks. Physica A, 289, 2455–2464.

    Google Scholar 

  • Guilhaumou, J. (2006). Sieyés et le non-dit de la sociologie: du mot à la chose. Revue d’histoire des sciences humaines, Naissance de la science sociale (1750–1850), 15, 117–134.

    Google Scholar 

  • Hellsten, I., Lambiotte, R., Scharnhorst, A., & Ausloos, M. (2006). A journey through the landscape of physics and beyond − the self-citation patterns of Werner Ebeling. Scientometrics, 72, 469–486.

    Google Scholar 

  • Hellsten, I., Lambiotte, R., Scharnhorst, A., & Ausloos, M. (2007). Self-citations, co−authorships and keywords: A new method for detecting scientists’ field mobility? Scientometrics, 72, 469–486.

    Google Scholar 

  • Heppenstall, A. J., Crooks, A. T., See, L. M., & Batty, M. (Eds.). (2012). Agent-based models of geographical systems. Dordretch: Springer.

    Google Scholar 

  • Herrero, C. P. (2002). Ising model in small-world networks. Physical Review E, 65, 066110.

    Google Scholar 

  • Hotelling, H. (1929). Stability in competition. The Economic Journal, 39, 41–57.

    Google Scholar 

  • Ising, E. (1925). Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik, 31, 253–258.

    Google Scholar 

  • Jackson, M. O. (2011). An overview of social networks and economic applications. In J. Benhabib, A. Bisin, & M. O. Jackson (Eds.), The handbook of social economics. Amsterdam: North Holland Press.

    Google Scholar 

  • Kali, R., & Reyes, J. (2007). The architecture of globalization: A network approach to international economic integration. Journal of International Business Studies, 28, 595–620.

    Google Scholar 

  • Kesavayuth, D., Manasakis, C., & Zikos, V. (2014). Venture with upstream market power. Working Paper.

    Google Scholar 

  • Kirman, A. (1992). Whom or what does the representative individual represent? The Journal of Economic Perspectives, 6, 117–136.

    Google Scholar 

  • Kirman, A. (1997). The economy as an evolving network. Journal of Evolutionary Economics, 7, 339–353.

    Google Scholar 

  • Kirman, A., Oddou, C., & Weber, S. (1986). Stochastic communication and coalition formation. Econometrica, 54, 129–138.

    Google Scholar 

  • Koulouris, A., Katerelos, I., & Tsekeris, T. (2013). Multi-equilibria regulation agent−based model of opinion dynamics in social networks. Interdisciplinary Description of Complex Systems, 11, 51–70.

    Google Scholar 

  • Krapivsky, P. L., Redner, S., & Leyvraz, F. (2000). Connectivity of growing random networks. Physical Review Letters, 85, 4629–4632.

    Google Scholar 

  • Kumar, R., Novak, J., & Tomkins, A. (2010). Structure and evolution of online social networks. In P. S. Yu, et al. (Eds.), Link mining: Models, algorithms, and applications (pp. 337–357). New York: Springer.

    Google Scholar 

  • Lambiotte, R., & Ausloos, M. (2005a). n-body decomposition of bipartite networks. Physical Review E, 72, 066117.

    Google Scholar 

  • Lambiotte, R., & Ausloos, M. (2005b). Uncovering collective listening habits and music genres in bipartite networks. Physical Review E, 72, 066107.

    Google Scholar 

  • Lambiotte R., & Ausloos M. (2006a). Collaborative tagging as a tripartite network. Lecture Notes in Computer Science, 3993(III), 1114–1117.

    Google Scholar 

  • Lambiotte, R., & Ausloos, M. (2006b). Modelling the evolution of coupled networks. In First World Congress on Social Simulation e-Proceedings (Vol. 1, pp. 375–381).

    Google Scholar 

  • Lambiotte, R., & Ausloos, M. (2006c). On the genrefication of music: A percolation approach. European Physical Journal B, 50, 183–188.

    Google Scholar 

  • Lambiotte, R., & Ausloos, M. (2007a). Coexistence of opposite opinions in a network with communities. Journal of Statistical Mechanics, 8, P08026.

    Google Scholar 

  • Lambiotte, R., & Ausloos, M. (2007b). Growing network with j-redirection. Europhysics Letters, 77, 58002.

    Google Scholar 

  • Lambiotte, R., Ausloos, M., & Holyst, J. A. (2007). Majority model on a network with communities. Physical Review E, 75, 030101.

    Google Scholar 

  • LeBellac, M. (1992). Quantum and statistical field theory. New York: Oxford University Press.

    Google Scholar 

  • Lee, K. M., Yang, J. S., Kim, G., Lee, J., Goh, K. I., & Kim, I. M. (2011). Impact of the topology of global macroeconomic network on the spreading of economic crises. PLoS ONE, 6, e18443. doi:10.1371/journal.pone.0018443.

    Google Scholar 

  • Levy, H., Levy, M., & Solomon, S. (2000). Microscopic simulation of financial markets: From investor behavior to market phenomena. Orlando: Academic.

    Google Scholar 

  • López-Pintado, D. (2008a). Diffusion in complex social networks. Games and Economic Behavior, 62, 573–590.

    Google Scholar 

  • López-Pintado, D. (2008b). The spread of free-riding behavior in a social network. Eastern Economic Journal, 34, 464–479.

    Google Scholar 

  • López-Pintado, D., & Watts, D. J. (2008). Social influence, binary decisions and collective dynamics. Rationality and Society, 20, 399–443.

    Google Scholar 

  • Lux, T., & Westerhoff, F. (2009). Economic crisis. Nature Physics, 5, 2–3.

    Google Scholar 

  • Manasakis, C., Petrakis, E., & Zikos, V. (2014). Downstream research joint venture with upstream market power. Working paper.

    Google Scholar 

  • Mantegna, R. N. (1999). Hierarchical structure in financial markets. European Physical Journal B, 11, 193–197.

    Google Scholar 

  • Martin, R., & Sunley, P. (2007). Complexity thinking and evolutionary economic geography. Journal of Economic Geography, 7, 573–601.

    Google Scholar 

  • Mattis, D. C. (1976). Solvable spin systems with random interaction. Physics Letters, 56A, 421–422.

    Google Scholar 

  • Meadows, D. L. (1970). Dynamics of commodity production cycles. Cambridge (MA): Wright-Allen Press.

    Google Scholar 

  • Milgram, S. (1967). The small-world problem. Psychology Today, 1, 60–67.

    Google Scholar 

  • Miskiewicz, J., & Ausloos, M. (2006). G7 country Gross Domestic Product (GDP) time correlations. A graph network analysis. In H. Takayasu (Ed.), Practical fruits of econophysics. Berlin: Springer.

    Google Scholar 

  • Molloy, M., & Reed, B. (1995). A critical point for random graphs with a given degree sequence. Random Structures and Algorithms, 6, 61–179.

    Google Scholar 

  • Molloy, M., & Reed, B. (1998). The size of the giant component of a random graph with a given degree sequence. Combinatorics, Probability and Computing, 7, 295–305.

    Google Scholar 

  • Murray, J. D. (2002). Mathematical biology I. An introduction, 3rd edn. Berlin: Springer.

    Google Scholar 

  • Namatame, A., Kaizouji, T., & Aruka, Y. (Eds.). (2006). The complex networks of economic interactions. Berlin: Springer.

    Google Scholar 

  • Nelson, D. (2015). Migration and networks. In P. Commendatore, S. Kayam, & I. Kubin (Eds.), Complexity and geographical economics: Topics and tools. Heidelberg: Springer.

    Google Scholar 

  • Newman, M. (2003). The structure and function of complex networks. SIAM Reviews, 45, 167–256.

    Google Scholar 

  • Newman, M., Moore, C., & Watts, D. J. (2000). Mean-field solution of the small-world network model. Physical Review Letters, 84, 3201–3204.

    Google Scholar 

  • Newman, M., Watts, D., & Barabási, A. L. (2006). The structure and dynamics of networks. Princeton (NJ): Princeton University Press.

    Google Scholar 

  • Newman, M. E. J. (2002a). Assortative mixing in networks. Physical Review Letters, 89, 208701.

    Google Scholar 

  • Newman, M. E. J. (2002b). The structure and function of networks. Computer Physics Communications, 147, 40–45.

    Google Scholar 

  • Newman, M. E. J., Strogatz, S. H., & Watts, D. J. (2001). Random graphs with arbitrary degree distributions and their applications. Physical Review E, 64, 026118.

    Google Scholar 

  • Oatley, T., Winecoff, W. K., Pennock, A., & Danzman, S. B. (2013). The political economy of global finance: A network model. Perspectives on Politics, 1, 133–153.

    Google Scholar 

  • Onnela, J. P. (2006). Complex networks in the study if financial and social systems. Ph.D. Thesis. http://jponnela.com/web$_$documents/t2.pdf

  • Onnela, J. P., Chakraborti, A., Kaski, K., & Kertész, J. (2002). Dynamic asset trees and portfolio analysis. European Physical Journal B, 3, 285–288.

    Google Scholar 

  • Onnela, J. P., Chakraborti, A., Kaski, K., & Kertész, J. (2003a). Dynamic asset trees and black monday. Physica A, 324, 247–252.

    Google Scholar 

  • Onnela, J. P., Chakraborti, A., Kaski, K., Kertész, J., & Kanto, A. (2003b). Asset trees and asset graphs in financial markets. Physica Scipta, 106, 48–54.

    Google Scholar 

  • Onnela, J. P., Chakraborti, A., Kaski, K., Kertész, J., & Kanto, A. (2003c). Dynamics of market correlations: Taxonomy and portfolio analysis. Physical Review E, 68, 056110.

    Google Scholar 

  • Onnela, J. P., Kaski, K., & Kertész, J. (2004a). Clustering and information in correlation based financial networks. European Physical Journal B, 38, 353–362.

    Google Scholar 

  • Onnela, J. P., Saramäki, J., Kertész, J., & Kaski, K. (2004b). Intensity and coherence of motifs in weighted complex networks. Physical Review E, 71, 065103.

    Google Scholar 

  • Onnela, J. P., Saramäki, J., Kaski, K., & Kertész, J. (2006). Financial market- a network perspective. In H. Takayasu (Ed.), Practical fruits of econophysics. Nikkei econophysics III proceedings (pp. 302–306). Tokyo: Springer.

    Google Scholar 

  • Onsager, L. (1944). Crystal statistics. I. A two-dimensional model with an order-disorder transition. Physics Review, 65, 117–149.

    Google Scholar 

  • Paas, T., & Halapuu, V. (2012). Attitudes towards immigrants and the integration of ethnically diverse societies. Norface Migration Discussion Paper No 2012–23.

    Google Scholar 

  • Paas, T., & Schlitte, F. (2008). Regional income inequality and convergence process in the EU-25. Scienze Regionali: Italian Journal of Regional Science, 7, 29–49.

    Google Scholar 

  • Paas, T., & Vahi, T. (2012). Regional disparities and innovations in Europe. http://ideas.repec.org/p/wiw/wiwrsa/ersa12p80.html

  • Palla, G., Barabási, A. L., & Vicsek, T. (2007). Quantifying social group evolution. Nature, 446, 664–667.

    Google Scholar 

  • Pastor-Satorras, R., Rubi, M., & Díaz-Guilera, A. (Eds.). (2003). Statistical mechanics of complex networks. Berlin: Springer.

    Google Scholar 

  • Pekalski, A. (2001). Ising model on a small world network. Physical Review E, 64, 057104.

    Google Scholar 

  • Pissanetzky, S. (1984). Sparse matrix technology. New York: Academic.

    Google Scholar 

  • Pombo-Romero, J., Varela, L. M., & Ricoy, C. (2013). Diffusion of innovations in social interaction systems. An agent-based model for the introduction of new drugs in markets. The European Journal of Health Economics, 14, 443–455.

    Google Scholar 

  • Pozzi, F., Aste, T., Rotundo, G., & Matteo, T. D. (2008). Dynamical correlations in financial systems. In Complex systems II. Proceedings of the SPIE, The International Society for Optical Engineering, 6802, 68021E.

    Google Scholar 

  • Pozzi, F., Matteo, T. D., & Aste, T. (2013). Spread of risk across financial markets: Better to invest in the peripheries. Scientific Reports, 3, 1665.

    Google Scholar 

  • Puu, T. (1982). Outline of a trade cycle model in continuous space and time. Geographical Analysis, 14, 1–9.

    Google Scholar 

  • Quetelet, A. (1835). Sur l’homme et le développement de ses facultés, ou Essai de physique sociale. Paris: Bachelier.

    Google Scholar 

  • Quetelet, A. (1869). Physique sociale, ou essai sur le développement des facultés de l’homme. Paris: Muquard.

    Google Scholar 

  • ten Raa, T. (1986). The initial value problem for the trade cycle in Euclidean space. Regional Science and Urban Economics, 16, 527–546.

    Google Scholar 

  • Redelico, F. O., Proto, A. N., & Ausloos, M. (2009). Hierarchical structures in the gross domestic product per capita fluctuation in Latin American countries. Physica A, 388, 3527–3535.

    Google Scholar 

  • Reyes, J., Schiavo, S., & Fagiolo, G. (2010). Using complex networks analysis to assess the evolution of international economic integration: The cases of East Asia and Latin America. The Journal of International Trade and Economic Development, 19, 215–239.

    Google Scholar 

  • Reyes, J. A., Wooster, R. B., & Shirrell, S. (2009). Regional trade agreements and the pattern of trade: A networks approach. doi:10.2139/ssrn.1408784.

    Google Scholar 

  • Rodrigue, J. P. (2013). Transportation, globalization and international trade. New York: Routledge.

    Google Scholar 

  • Ross, A. G. C., & Ausloos, M. (2009). Organizational and dynamical aspects of a small network with two distinct communities: Neocreationists vs. evolution defenders. Scientometrics, 80, 457–472.

    Google Scholar 

  • Rotundo, G. (2011). Centrality measures in shareholding networks. In Use of risk analysis in computer-aided persuasion. NATO science for peace and security series (Vol. 88, pp. 12–28). Amsterdam: IOS Press.

    Google Scholar 

  • Rotundo, G. (2013). An investigation of computational complexity of the method of symbolic images. In A. N. Proto, M. Squillante, J. Kacpryzk (Eds.), Advanced dynamic modeling of economic and social systems, Studies in computational intelligence series (Vol. 448, 109–126). Berlin: Springer.

    Google Scholar 

  • Rotundo, G., & D’Arcangelis, A. M. (2014). Mutual funds relationship and performance analysis. Quality & Quantity. doi:10.1007/s11135-014-0066-z.

    Google Scholar 

  • Rotundo, G., & Ausloos, M. (2010). Organization of networks with tagged nodes and biased links: A priori distinct communities. The case of intelligent design proponents and Darwinian evolution defenders. Physica A, 20, 643–660.

    Google Scholar 

  • Rotundo, G., & D’Arcangelis, A. (2013). Network of firms: An analysis of market concentration. Quality and Quantity. doi:10.1007/s11135-013-9858-9.

    Google Scholar 

  • Rotundo, G., & D’Arcangelis, A. M. (2010a). Network analysis of ownership and control structure in the Italian stock market. Advances and Applications in Statistical Sciences, 2, 255–273.

    Google Scholar 

  • Rotundo, G., & D’Arcangelis, A. M. (2010b). Ownership and control in shareholding networks. Journal of Economic Interaction and Coordination, 5, 191–219.

    Google Scholar 

  • Salvemini, M. T., Simeone, B., & Succi, R. (1995). Analisi del possesso integrato nei gruppi di imprese mediante grafi. L’Industria, XVI, 641–662.

    Google Scholar 

  • Saramäki, J., Onnela, J. P., Kertész, J., & Kaski, K. (2005). Characterizing motifs in weighted complex networks. In J. Mendes (Ed.), Science of complex networks. AIP conference proceedings (Vol. 776, p. 108). New York: American Institute of Physics.

    Google Scholar 

  • Săvoiu, G., & Iorga-Simăn, I. (2012). Sociophysics: A new science or a new domain for physicists in a modern university. In G. Săvoiu (Ed.), Econophysics: Background and applications in economics, finance, and sociophysics. Oxford/Waltham: Academic.

    Google Scholar 

  • Schweitzer, F., Fagiolo, G., Sornette, D., Vega-Redondo, F., & White, D. R. (2009). Economic networks: What do we know and what do we need to know? Advances in Complex Systems, 12, 407–422.

    Google Scholar 

  • Semitiel-García, M., & Noguera-Méndez, P. (2012). The structure of inter-industry systems and the diffusion of innovations: The case of Spain. Technological Forecasting and Social Change, 79, 1548–1567.

    Google Scholar 

  • Serrano, M. A., Krioukov, D., & Boguñá, M. (2008). Self-similarity of complex networks and hidden metric spaces. Physical Review Letters, 100, 078701.

    Google Scholar 

  • Seyed-allaei, H., Bianconi, G., & Marsili, M. (2006). Scale-free networks with an exponent less than two. Physical Review E, 73, 046113.

    Google Scholar 

  • Siek, J. G., Lee, L. Q., & Lumsdaine, A. (2001). The boost graph library. Reading (MA): Addison-Wesley.

    Google Scholar 

  • Souma, W., Fujiwara, Y., & Aoyama, H. (2003). Growth and fluctuations of personal and company’s income. Physica A, 324, 396–401.

    Google Scholar 

  • Sousa, A., Malarz, K., & Galam, S. (2005). Reshuffling spins with short range interactions: When sociophysics produces physical results. International Journal of Modern Physics C, 16, 1507–1517.

    Google Scholar 

  • Stauffer, D. (2003). Sociophysics− a review of recent Monte Carlo simulations. Fractals, 11, 313–318.

    Google Scholar 

  • Stauffer, D. (2012). A biased review of sociophysics. Journal of Statistical Physics, 151, 9–20.

    Google Scholar 

  • Tesfatsion, L. (2003). Agent-based computational economics: modelling economies as complex adaptive systems. Information Sciences, 149, 262–268.

    Google Scholar 

  • Toivonen, R., Onnela, J. P., Saramäki, J., Hyvönen, J., & Kaski, K. (2006). A model for social networks. Physica A, 371, 851–860.

    Google Scholar 

  • Ugander, J., Karrer, B., Backstrom, L., & Marlow, C. (2011). The anatomy of the Facebook social graph. CoRR abs/11114503.

    Google Scholar 

  • Vega-Redondo, F. (2007). Complex social networks. Cambridge: Cambridge University Press.

    Google Scholar 

  • Viana-Lopes, J., Pogorelov, G., dos Santos, J. L., & Toral, R. (2004). Exact solution of Ising model on a small-world network. Physical Review E, 70, 026112.

    Google Scholar 

  • Vitali, S., Glattfelder, J. B., & Battiston, S. (2011). The network of global corporate control. PLoS ONE, 6, e25995.

    Google Scholar 

  • Vitanov, N. K., & Ausloos, M. (2012). Knowledge epidemics and population dynamics models for describing idea diffusion. In A. Scharnhorst, K. Börner, & P. van den Besselaar (Eds.), Models of science dynamics: Encounters between complexity theory and information sciences (pp. 69–125). Berlin: Springer.

    Google Scholar 

  • Vitting Andersen, J., Nowak, A., Rotundo, G., Parrott, L., & Martínez, S. (2011). “Price-Quakes” shaking the world’s stock exchanges. PLoS ONE, 6, e26472.

    Google Scholar 

  • Walras, L. (1954). Elements of pure economics, or the theory of social wealth. London: Allen and Unwin.

    Google Scholar 

  • Watts, D., & Strogatz, S. (1998). Collective dynamics of small-world networks. Nature, 393, 440–442.

    Google Scholar 

  • Xiang, L., Yu, Y. J., & Guanrong, C. (2003). Complexity and synchronization of the world trade web. Physica A, 328, 287–296.

    Google Scholar 

  • Yang, C. N. (1952). The spontaneous magnetization of a two dimensional Ising model. Physical Review, 85, 808–816.

    Google Scholar 

  • Zaklan, G., Lima, W., & Westerhoff, F. (2008). Controlling tax evasion fluctuations. Physica A, 387, 5857–5861.

    Google Scholar 

  • Zaklan, G., Westerhoff, F., & Stauffer, F. D. (2009). Analysing tax evasion dynamics via the Ising model. Journal of Economic Interaction and Coordination, 4, 1–14.

    Google Scholar 

Download references

Acknowledgements

This work has been performed in the framework of COST Action IS1104 “The EU in the new economic complex geography: models, tools and policy evaluation”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis M. Varela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Varela, L.M., Rotundo, G., Ausloos, M., Carrete, J. (2015). Complex Network Analysis in Socioeconomic Models. In: Commendatore, P., Kayam, S., Kubin, I. (eds) Complexity and Geographical Economics. Dynamic Modeling and Econometrics in Economics and Finance, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-12805-4_9

Download citation

Publish with us

Policies and ethics