Skip to main content

Isolation and Initial Characterization of Resistant Cells to Photodynamic Therapy

  • Chapter
  • First Online:
Resistance to Photodynamic Therapy in Cancer

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 5))

  • 943 Accesses

Abstract

After photodynamic therapy (PDT), the apparition of resistant tumor cells can occur. Laboratory models are being developed in order to understand the potential mechanisms implicated in such resistance. In this sense, we describe the methods published for the isolation and characterization of tumor cells resistant to PDT. We also propose other unpublished procedures that could be of interest for the study of cells resistant to PDT. Factors such as the parental cell line, the photosensitizer (PS) (or prodrug), the photodynamic treatment conditions, the treatment interval, and the clonal or total population selection have to be taken into consideration. Treatment doses are generally high and repeated over time. The development of resistant cells to PDT could take several months. The characterization of resistant cell populations vs parental cells can be performed by using different cellular and molecular techniques, including: cell morphology analysis, intracellular PS content measurement, PS localization, migration and invasion capacity, expression and distribution of adhesion proteins, death proteins and evaluation of specific genes implicated in cell proliferation and survival. Transplantation mouse models also contribute to determine the biological activity of the PDT-resistant cells in vivo, allowing the evaluation of their tumorigenicity and aggressiveness. Laboratory cell models will help us to understand how resistance to anticancer PDT affects the biological and functional aspects of tumorigenicity in vitro and in vivo, which are necessary to improve the clinical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714–26.

    CAS  PubMed  Google Scholar 

  2. Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol. 2005;205:275–92.

    CAS  PubMed  Google Scholar 

  3. Gillet JP, Gottesman M. Mechanisms of multidrug resistance in cancer. Methods Mol. Biol. 2010;596:47–76.

    CAS  PubMed  Google Scholar 

  4. Hombach-Klonisch S, Natarajan S, Thanasupawat T, Medapati M, Pathak A, Ghavami S, Klonisch T. Mechanisms of therapeutic resistance in cancer (stem) cells with emphasis on thyroid cancer cells. Front Endocrinol (Lausanne). 2014;5:37.

    Google Scholar 

  5. Al-Dimassi S, Abou-Antoun T, El-Sibai M. Cancer cell resistance mechanisms: a mini review. Clin Transl Oncol. 2014;16:511–6.

    CAS  PubMed  Google Scholar 

  6. Maydan E, Nooothet PK, Goldman MP. Case reports: development of a keratoacanthoma after topical photodynamic therapy with 5-aminolevolunic acid. J Drugs Dermat. 2006;5:804–6.

    Google Scholar 

  7. Fiechter S, Skaria A, Nievergelt H, Anex R, Borradori L, Parmentier L. Facial basal cell carcinomas recurring after photodynamic therapy: a retrospective analysis of histological subtypes. Dermatology. 2012;224:346–51.

    PubMed  Google Scholar 

  8. Gilaberte Y, Milla L, Salazar N, Vera-Alvarez J, Kourani O, Damian A, Rivarola V, Roca MJ, Espada J, González S, Juarranz A. Cellular intrinsic factors involved in the resistance of squamous cell carcinoma to photodynamic therapy. J Invest- Dermatol. 2014;134(9):2428–37.

    CAS  PubMed  Google Scholar 

  9. Bardazzi F, Loi C, Magnano M, Burtica EC, Giordano F, Patrizi A. Methyl-aminolevulinic acid photodynamic therapy for actinic keratoses: an useful treatment or a risk factor? A retrospective study. J Dermatol Treat. 2014. (In press).

    Google Scholar 

  10. Juarranz A, Jaén P, Sanz-Rodríguez F, Cuevas J, González S. Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol. 2008;10:148–54.

    CAS  PubMed  Google Scholar 

  11. Bredell MG, Besic E, Maake C, Walt H. The application and challenges of clinical PD-PDT in the head and neck region: a short review. J Photochem Photobiol B. 2010;101:185–90.

    CAS  PubMed  Google Scholar 

  12. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61:250–81.

    PubMed Central  PubMed  Google Scholar 

  13. Neville JA, Welch E, Leffell DJ. Management of nonmelanoma skin cancer in 2007. Nat Clin Pract Oncol. 2007;4:462–9.

    PubMed  Google Scholar 

  14. Morton CA, McKenna KE, Rhodes LE. British Association of Dermatologists Therapy G, Audit S, the British Photodermatology G Guidelines for topical photodynamic therapy: update. Br J Dermatol. 2008;159:1245–66.

    CAS  PubMed  Google Scholar 

  15. Ortiz-Policarpio B, Lui H. Methyl aminolevulinate-PDT for actinic keratoses and superficial nonmelanoma skin cancers. Skin Therapy Lett. 2009;14:1–3.

    CAS  PubMed  Google Scholar 

  16. Lackner MR, Wilson TR, Settleman J. Mechanisms of acquired resistance to targeted cancer therapies. Future Oncol. 2012;8:999–1014.

    CAS  PubMed  Google Scholar 

  17. Rebucci M, Michiels C. Molecular aspects of cancer cell resistance to chemotherapy. Biochem Pharmacol. 2013;85:1219–26.

    CAS  PubMed  Google Scholar 

  18. Rosa R, Monteleone F, Zambrano N, Bianco R1. In vitro and in vivo models for analysis of resistance to anticancer molecular therapies. Curr Med Chem. 2014;21:1595–606.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Wu Q, Yang Z, Nie Y, Shi Y, Fan D. Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer Lett. 2014;347:159–66.

    CAS  PubMed  Google Scholar 

  20. Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta. 2010;1805:105–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Gerlinger M, Swanton C. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer. 2010;103:1139–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Saunders NA, Simpson F, Thompson EW, Hill MM, Endo-Munoz L, Leggatt G, Minchin RF, Guminski A. Role of intratumoral heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO Mol Med. 2012;4:675–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. McDermott M, Eustace A, Busschots S, Breen L, Crown J, Clynes M, O’Donovan N, Stordal B. In vitro development of chemotherapy and targeted therapy drug-resistant cancer cell lines: a practical guide with case studies. Front Oncol. 2014;4:40.

    PubMed Central  PubMed  Google Scholar 

  24. Biedler JL, Riehm H. Cellular resistance to actinomycin D in Chinese hamster Cells In vitro: cross-resistance, radioautographic, and cytogenetic studies. Cancer Res. 1970;30:1174–84.

    CAS  PubMed  Google Scholar 

  25. Hahn GM, van Kersen I. Isolation and initial characterization of thermoresistant RIF tumor cell strains. Cancer Res. 1988;48:1803–7.

    CAS  PubMed  Google Scholar 

  26. Luna MC, Gomer CJ. Isolation and characterization of mouse tumor cells resistant to porphyrin-mediated photodynamic therapy. Cancer Res. 1991;51:4243–9.

    CAS  PubMed  Google Scholar 

  27. Singh G, Wilson BC, Sharkey SM, Browman GP, Deschamps P. Resistance to photodynamic therapy in radiation induced fibrosarcoma-1 and Chinese hamster ovary-multi- drug resistant cells in vitro. Photochem Photobiol. 1991;54:307–12.

    CAS  PubMed  Google Scholar 

  28. Casas A, Perotti C, Ortel B, Di Venosa G, Saccoliti M, Battle A, Hasan T. Tumor cell lines resistant to ALA-mediated photodynamic therapy and possible tools to target surviving cells. Int J Oncol. 2006;29:397–405.

    CAS  PubMed  Google Scholar 

  29. Ikeda R, Vermeulen LC, Lau E, Jiang Z, Kavanaugh SM, Yamada K, Kolesar JM. Isolation and characterization of erlotinib-resistant human non-small cell lung cancer A549 cells. Oncol Lett. 2011;2:91–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Zuo KQ1, Zhang XP, Zou J, Li D, Lv ZW. Establishment of a paclitaxel resistant human breast cancer cell strain (MCF-7/Taxol) and intracellular paclitaxel binding protein analysis. J Int Med Res. 2010;38:1428–35.

    CAS  PubMed  Google Scholar 

  31. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jane-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi P Jr, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Gillet JP, Varma S, Gottesman MM. The clinical relevance of cancer cell lines. J Natl Cancer Inst. 2013;105:452–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Mayhew S, Vernon D, Schofield J, Griffiths J, Brown S. Investigation of cross-resistance to a range of photosensitizers, hyperthermia and UV light in two radiation-induced fibrosarcoma cell strains resistant to photodynamic therapy in vitro. Photochem Photobiol. 2001;73:39–46.

    CAS  PubMed  Google Scholar 

  34. Singh G, Espiritu M, Yun Shen X, Hanlon JG, Rainbow AJ. In vitro induction of PDT resistance in HT29, HT1376 and SK-N-MC cells by various photosensitizers. Photochem Photobiol. 2001;73:651–6.

    CAS  PubMed  Google Scholar 

  35. Tsai T, Tai Ji H, Chiang P, Chou R, Chang WW, Chen C. ALA-PDT results in phenotypic changes and decreased cellular invasion in surviving cancer cells. Lasers Surg Med. 2009;41:305–15.

    PubMed  Google Scholar 

  36. Milla LN, Cogno IS, Rodríguez ME, Sanz-Rodríguez F, Zamarrón A, Gilaberte Y, Carrasco E, Rivarola VA, Juarranz A. Isolation and characterization of squamous carcinoma cells resistant to photodynamic therapy. J Cell Biochem. 2011;112:2266–78.

    CAS  PubMed  Google Scholar 

  37. Breen L, Murphy L, Keenan J, Clynes M. Development of taxane resistance in a panel of human lung cancer cell lines. Toxicol In vitro. 2008;22:1234–41.

    Google Scholar 

  38. Breen L, Keenan J, Clynes M. Generation of lung cancer cell line variants by drug selection or cloning. Methods Mol Biol. 2011;731:125–33.

    CAS  PubMed  Google Scholar 

  39. Akiyama S, Fojo A, Hanover JA, Pastan I, Gottesman MM. Isolation and genetic characterization of human KB cell lines resistant to multiple drugs. Somat Cell Mol Genet. 1985;11:117–26.

    CAS  PubMed  Google Scholar 

  40. Yang LY, Trujillo JM, Siciliano MJ, Kido Y, Siddik ZH, Su YZ. Distinct P-glycoprotein expression in two subclones simultaneously selected from a human colon carcinoma cell line by cis-diamine dichloroplatinum (II). Int J Cancer. 1993;53:478–85.

    CAS  PubMed  Google Scholar 

  41. Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, Friedman C, Villegas E, Jacquemont C, Farrugia DJ, Couch FJ, Urban N, Taniguchi T. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature. 2008;451:1116–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  Google Scholar 

  43. Solyanik GI. Multifactorial nature of tumor drug resistance. Exp Oncol 2010;32:181–5.

    CAS  PubMed  Google Scholar 

  44. Mertins SD. Cancer stem cells: a systems biology view of their role in prognosis and therapy. Anticancer Drugs. 2014;25:353–67.

    CAS  PubMed  Google Scholar 

  45. Buytaert E, Dewaele M, Agostinis P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochem Biophys Acta. 2007;1776:86–107.

    CAS  PubMed  Google Scholar 

  46. Casas A, Di Venosa G, Hasan T, Batlle A. Mechanisms of resistance to photodynamic therapy. Curr Med Chem. 2011;18:2486–515.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Milla Sanabria L, Rodríguez ME, Cogno IS, Rumie Vittar NB, Pansa MF, Lamberti MJ, Rivarola VA. Direct and indirect photodynamic therapy effects on the cellular and molecular components of the tumor microenvironment. Biochim Biophys Acta. 2013;1835:36–45.

    CAS  PubMed  Google Scholar 

  48. Noguchi K, Katayama K, Sugimoto Y. Human ABC transporter ABCG2/BCRP expression in chemoresistance: basic and clinical perspectives for molecular cancer therapeutics. Pharmgenomics Pers Med. 2014;7:53–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Ishikawa T, Nakagawa H, Hagiya Y, Nonoguchi N, Miyatake S, Kuroiwa T. Key role of human ABC transporter ABCG2 in photodynamic therapy and photodynamic diagnosis. Adv Pharmacol Sci. 2010;2010:587306.

    PubMed Central  PubMed  Google Scholar 

  50. Morgan J, Jackson JD, Zheng X, Pandey SK, Pandey RK. Substrate affinity of photosensitizers derived from chlorophyll-a: the ABCG2 transporter affects the phototoxic response of side population stem cell-like cancer cells to photodynamic therapy. Mol Pharm. 2010;7:1789–804.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Robey RW, Steadman K, Polgar O, Bates SE. ABCG2-mediated transport of photosensitizers: potential impact on photodynamic therapy. Cancer Biol Ther. 2005;4:187–94.

    CAS  PubMed  Google Scholar 

  52. Li W, Zhang WJ, Ohnishi K, Yamada I, Ohno R, Hashimoto K. 5-Aminolaevulinic acid-mediated photodynamic therapy in multidrug resistant leukemia cells. J Photochem Photobiol B. 2001;60:79–86.

    CAS  PubMed  Google Scholar 

  53. Liu W, Baer MR, Bowman MJ, Pera P, Zheng X, Morgan J, Pandey RA, Oseroff AR. The tyrosine kinase inhibitor imatinibmesylate enhances the efficacy of photodynamic therapy by inhibiting ABCG2. Clin Cancer Res. 2007;13:2463–70.

    CAS  PubMed  Google Scholar 

  54. Bianco R, Troiani T, Tortora G, Ciardiello F. Intrinsic and acquired resistance to EGFR inhibitors in human cancer therapy. Endocr Relat Cancer. 2005;12:159–71.

    Google Scholar 

  55. Roskoski R Jr. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res. 2012;66:105–43.

    CAS  PubMed  Google Scholar 

  56. Tong Z, Singh G, Rainbow AJ. Sustained activation of the extracellular signal-regulated kinase pathway protects cells from photofrin-mediated photodynamic therapy. Cancer Res. 2002;62:5528–35.

    CAS  PubMed  Google Scholar 

  57. Weyergang A, Selbo PK, Berg K. Sustained ERK [corrected] inhibition by EGFR targeting therapies is a predictive factor for synergistic cytotoxicity with PDT as neoadjuvant therapy. Biochim Biophys Acta. 2013;1830:2659–70.

    CAS  PubMed  Google Scholar 

  58. Pincelli C, Marconi A. Keratinocyte stem cells: friends and foes. J Cell Physiol. 2010;225:310–5.

    CAS  PubMed  Google Scholar 

  59. La Porta CA. Thoughts about cancer stem cells in solid tumors. World J Stem Cells. 2012;4:17–20.

    PubMed Central  PubMed  Google Scholar 

  60. Ishii H, Iwatsuki M, Ieta K, Ohta D, Haraguchi N, Mimori K, MoriI M. Cancer stem cells and chemoradiation resistance. Cancer Sci. 2008;99:1871–7.

    CAS  PubMed  Google Scholar 

  61. Chiang AC, Massagué J. Molecular basis of metastasis. N Engl J Med. 2008;359:2814–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, Appelman H, Fields JZ, Wicha MS, Boman BM. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC). Cancer Res. 2009;69:3382–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Chen YC, Chen YW, Hsu HS, Tseng LM, Huang PI, Lu KH, Chen DT, Tai LK, Yung MC, Chang SC, Ku HH, Chiou SH, Lo WL. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun. 2009;385:307–13.

    CAS  PubMed  Google Scholar 

  64. Jiang F, Qiu Q, Khanna A, Todd NW, Deepak J, Xing L, Wang H, Liu Z, Su Y, Stass SA, Katz RL. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res. 2009;7:330–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Ortells MC, Keyes WM. New insights into skin stem cell aging and cancer. Biochem Soc Trans. 2014;42:663–9.

    CAS  PubMed  Google Scholar 

  66. Lang D, Mascarenhas JB, Shea CR. Melanocytes, melanocyte stem cells, and melanoma stem cells. Clin Dermatol. 2013;31:166–78.

    PubMed Central  PubMed  Google Scholar 

  67. Adhikary G, Grun D, Kerr C, Balasubramanian S, Rorke EA, Vemuri M, Boucher S, Bickenbach JR, Hornyak T, Xu W, Fisher ML, Eckert RL. Identification of a population of epidermal squamous cell carcinoma cells with enhanced potential for tumor formation. PLoS One. 2013;8:e84324.

    PubMed Central  PubMed  Google Scholar 

  68. Adams K, Rainbow AJ, Wilson BC, Singh G. In vivo resistance to photofrin-mediated photodynamic therapy in radiation-induced fibrosarcoma cells resistant to in vitro Photofrin-mediated photodynamic therapy. J Photochem Photobiol B. 1999;49:136–41.

    CAS  PubMed  Google Scholar 

  69. Lim YC, Yoo JO, Park D, Kang G, Hwang BM, Kim YM, Ha KS. Antitumor effect of photodynamic therapy with chlorin-based photosensitizer DH-II-24 in colorectal carcinoma. Cancer Sci. 2009;100:2431–6.

    CAS  PubMed  Google Scholar 

  70. Hoi SW, Wong HM, Chan JY, Yue GG, Tse GM, Law BK, Fong WP, Fung KP. Photodynamic therapy of Pheophorbidea inhibits the proliferation of human breast tumor via both caspase-dependent and—independent apoptotic pathways in in vitro and in vivo models. Phytother Res. 2012;26:734–42.

    CAS  PubMed  Google Scholar 

  71. Ren Y, Wang R, Liu Y, Guo H, Zhou X, Yuan X, Liu C, Tian J, Yin H, Wang Y, Zhang N. A hematoporphyrin-based delivery system for drug resistance reversal and tumor ablation. Biomaterials. 2014;35:2462–70.

    CAS  PubMed  Google Scholar 

  72. Tang PM, Chan JY, Zhang DM, Au SW, Fong WP, Kong SK, Tsui SK, Waye MM, Mak TC, Fung KP. Pheophorbide a, an active component in Scutellaria barbata, reverses P-glycoprotein-mediated multidrug resistance on a human hepatoma cell line R-HepG2. Cancer Biol Ther. 2007;6:504–9.

    CAS  PubMed  Google Scholar 

  73. Yu CH, Yu CC. Photodynamic therapy with 5-aminolevulinic acid (ALA) impairs tumor initiating and chemo-resistance property in head and neck cancer-derived cancer stem cells. PLoS One. 2014;9:e87129.

    PubMed Central  PubMed  Google Scholar 

  74. Perona R, Sánchez-Pérez I. Control of oncogenesis and cancer therapy resistance. Br J Cancer. 2004;90:573–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Martinez-Carpio PA, Trelles MA. The role of epidermal growth factor receptor in photodynamic therapy: a review of the literature and proposal for future investigation. Lasers Med Sci. 2010;25:767–71.

    PubMed  Google Scholar 

  76. Edmonds C, Hagan S, Gallagher-Colombo SM, Busch TM, Cengel KA. Photodynamic therapy activated signaling from epidermal growth factor receptor and STAT3: Targeting survival pathways to increase PDT efficacy in ovarian and lung cancer. Cancer Biol Ther. 2012;13:1463–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Rosenzweig SA. Acquired resistance to drugs targeting receptor tyrosine kinases. Biochem Pharmacol. 2012;83:1041–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Tong Z, Singh G, Rainbow AJ. The role of the p53 tumor suppressor in the response of human cells to photofrin-mediated photodynamic therapy. Photochem Photobiol. 2000;71:201–10.

    CAS  PubMed  Google Scholar 

  79. Zawacka-Pankau J, Krachulec J, Grulkowski I, Bielawski KP, Selivanova G. The p53-mediated cytotoxicity of photodynamic therapy of cancer: recent advances. Toxicol Appl Pharmacol. 2008;232:487–97.

    CAS  PubMed  Google Scholar 

  80. Lee SY, Luk SK, Chuang CP, Yip SP, To SS, Yung YM. TP53 regulates human AlkB homologue 2 expression in glioma resistance to Photofrin-mediated photodynamic therapy. Br J Cancer. 2010;103:362–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Nakanishi A, Kitagishi Y, Ogura Y, Matsuda S. The tumor suppressor PTEN interacts with p53 in hereditary cancer. Int J Oncol. 2014;44:1813–9.

    CAS  PubMed  Google Scholar 

  82. Grossman D, McNiff JM, LI F, Altieri DC. Expression of the apoptosis inhibitor, survivin, in nonmelanoma skin cancer and gene targeting in a keratinocyte cell line. Lab Invest. 1999;79:1121–6.

    CAS  PubMed  Google Scholar 

  83. Zaffaroni N, Pennati M, Colella G. Expression of the anti-apoptotic gene survivin correlates with taxol resistance in human ovarian cancer. Cell Mol Life Sci. 2002;59:1406–12.

    CAS  PubMed  Google Scholar 

  84. Rodel F, Hoffman J, Distel L. Survivin as a radioresistance factor and prognostic and therapeutic target for radiotherapy in rectal cancer. Cancer Res. 2005;65:4881–7.

    PubMed  Google Scholar 

  85. Ferrario Á Rucker N Wong S Luna M Gomer CJ. Survivin, a member of the inhibitor of apoptosis family is induced by photodynamic therapy and is a target for improving treatment response. Cancer Res. 2007;67:4989–95.

    CAS  PubMed  Google Scholar 

  86. Yamamoto H, Yee Ngan C, Monden M. Cancer cells survive with survivin. Cancer Sci. 2008;99:1709–14.

    CAS  PubMed  Google Scholar 

  87. Gomer CJ, Ryter SW, Ferrario A, Rucker N, Wong S, Fisher AM. Photodynamic therapy-mediated oxidative stress can induce expression of heat shock proteins. Cancer Res. 1996;56:2355–60.

    CAS  PubMed  Google Scholar 

  88. Luna MC, Ferrario A, Wong S, Fisher AM, Gomer CJ. Photodynamic therapy-mediated oxidative stress as a molecular switch for the temporal expression of genes ligated to the human heat shock promoter. Cancer Res. 2000;60:1637–44.

    CAS  PubMed  Google Scholar 

  89. Ferrario A, Gomer CJ. Targeting the 90 kDa heat shock protein improves photodynamic therapy. Cancer Lett. 2010;289:188–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Etminan N, Peters C, Lakbir D, Bünemann E, Börger V, Sabel MC, Hänggi D, Steiger HJ, Stummer W, Sorg RV. Heat-shock protein 70-dependent dendritic cell activation by 5-aminolevulinic acid-mediated photodynamic treatment of human glioblastoma spheroids in vitro. Br J Cancer. 2011;105:961–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Casas A, Di Venosa G, Vanzulli S, Perotti C, Mamome L, Rodriguez L, Simian M, Juarranz A, Pontiggia O, Hasan T, Batlle A. Decreased metastatic phenotype in cells resistant to aminolevulinic acid-photodynamic therapy. Cancer Lett. 2008;271:342–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Sharkey SM, Wilson BC, Moorehead R, Singh G. Mitochondrial alterations in photodynamic therapy-resistant cells. Cancer Res. 1993;53:4994–9.

    CAS  PubMed  Google Scholar 

  93. Morgan J, Oseroff AR. Mitochondria-based photodynamic anti-cancer therapy. Adv Drug Deliv Rev. 2001;49:71–86.

    CAS  PubMed  Google Scholar 

  94. Shen XY, Zacal N, Singh G, Rainbow AJ. Alterations in mitochondrial and apoptosis-regulating gene expression in photodynamic therapy-resistant variants of HT29 colon carcinoma cells. Photochem Photobiol. 2005;81:306–13.

    CAS  PubMed  Google Scholar 

  95. Hung HI, Schwartz JM, Maldonado EN, Lemasters JJ, Nieminen AL. Mitoferrin-2-dependent mitochondrial iron uptake sensitizes human head and neck squamous carcinoma cells to photodynamic therapy. J Biol Chem. 2013;288:677–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Mukherjee A, Misra S, Howlett NG, Karmakar P. Multinucleation regulated by the Akt/PTEN signaling pathway is a survival strategy for HepG2 cells. Mutat Res. 2013;755:135–40.

    CAS  PubMed  Google Scholar 

  97. Tanaka T, Toujima S, Tanaka J. Differential sensitivity to paclitaxel-induced apoptosis and growth suppression in paclitaxel-resistant cell lines established from HEC-1 human endometrial adenocarcinoma cells. Int J Oncol. 2012;41:1837–44.

    CAS  PubMed  Google Scholar 

  98. Fiedler DM, Eckl PM, Krammer B. Does delta-aminolaevulinic acid induce genotoxic effects? J Photochem Photobiol B. 1996;33:39–44.

    CAS  PubMed  Google Scholar 

  99. Evans HH, Horng MF, Ricanati M, Deahl JT, Oleinick NL. Mutagenicity of photodynamic therapy as compared to UVC and ionizing radiation in human and murine lymphoblast cell lines. Photochem Photobiol. 1997;66:690–6.

    CAS  PubMed  Google Scholar 

  100. Rousset N, Keminon E, Eléouet S, Le Néel T, Auget JL, Vonarx V, Carré J, Lajat Y, Patrice T. Use of alkaline Comet assay to assess DNA repair after m-THPC-PDT. J Photochem Photobiol B. 2000;56:118–31.

    CAS  PubMed  Google Scholar 

  101. Woods JA, Traynor NJ, Brancaleon L, Moseley H. The effect of photofrin on DNA strand breaks and base oxidation in HaCaT keratinocytes: a comet assay study. Photochem Photobiol. 2004;79:105–13.

    CAS  PubMed  Google Scholar 

  102. Struski S, Doco-Fenzy M, Koehler M, Chudoba I, Levy F, Masson L, Michel N, Ulrich E, Gruson N, Bénard J, Potron G, Cornillet-Lefebvre P. Cytogenetic evolution of human ovarian cell lines associated with chemoresistance and loss of tumorigenicity. Anal Cell Pathol. 2003;25:115–22.

    CAS  PubMed  Google Scholar 

  103. Qutob SS, Multani AS, Pathak S, Feng Y, Kendal WS, Ng CE. Comparison of the X-radiation, drug and ultraviolet-radiation responses of clones isolated from a human colorectal tumor cell line. Radiat Res. 2004;161:326–34.

    CAS  PubMed  Google Scholar 

  104. Oudin C, Bonnetain F, Boidot R, Végran F, Soubeyrand MS, Arnould L, Riedinger JM, Lizard-Nacol S. Patterns of loss of heterozygosity in breast carcinoma during neoadjuvant chemotherapy. Int J Oncol. 2007;30:1145–51.

    CAS  PubMed  Google Scholar 

  105. Roschke AV, Kirsch IR. Targeting karyotypic complexity and chromosomal instability of cancer cells. Curr Drug Targets. 2010;11:1341–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Cooke SL, Ng CK, Melnyk N, Garcia MJ, Hardcastle T, Temple J, Langdon S, Huntsman D, Brenton JD. Genomic analysis of genetic heterogeneity and evolution in high-grade serous ovarian carcinoma. Oncogene. 2010;29:4905–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Wilson BC, Olivo M, Singh G. Subcellular localization of photofrin and aminolevulinic acid and photodynamic cross-resistance in vitro in radiation-induced fibrosarcoma cells sensitive or resistant to photofrin-mediated photodynamic therapy. Photochem Photobiol. 1997;65:166–76.

    CAS  PubMed  Google Scholar 

  108. Ogino T, Kobuchi H, Munetomo K, Fujita H, Yamamoto M, Utsumi T, Inoue K, Shuin T, Sasaki J, Inoue M, Utsumi K. Serum-dependent export of protoporphyrin IX by ATP-binding cassette transporter G2 in T24 cells. Mol Cell Biochem. 2011;358:297–307.

    CAS  PubMed  Google Scholar 

  109. Barron GA, Moseley H, Woods JA. Differential sensitivity in cell lines to photodynamic therapy in combination with ABCG2 inhibition. J Photochem Photobiol B. 2013;126:87–96.

    CAS  PubMed  Google Scholar 

  110. Hehlgans S, Haase M, Cordes N. Signalling via integrins: implications for cell survival and anticancer strategies. Biochem Biophys Acta. 2007;1775:163–80.

    CAS  PubMed  Google Scholar 

  111. Hazlehurst LA, Dalton WS. Mechanisms associated with cell adhesion mediated drug resistance (CAM-DR) in hematopoietic malignancies. Cancer Metast Rev. 2001;20:43–50.

    CAS  Google Scholar 

  112. Mierke CT, Kollmannsberger P, Zitterbart DP, Diez G, Koch TM, Marg S, Ziegler WH, Goldmann WH, Fabry B. Vinculin facilitates cell invasion into three-dimensional collagen matrices. J Cell Biol Chem. 2010;285:13121–30.

    CAS  Google Scholar 

  113. Casas A, Sanz-Rodriguez F, Di Venosa G, Rodriguez L, Mamone L, Blázquez A, Jaén P, Batlle A, Stockert JC, Juarranz A. Disorganisation of cytoskeleton in cells resistant to photodynamic treatment with decreased metastatic phenotype. Cancer Lett. 2008;270:56–65.

    CAS  PubMed  Google Scholar 

  114. Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J. Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev. 2014;94:235–63.

    CAS  PubMed  Google Scholar 

  115. Fogh BS, Multhaupt HA, Couchman JR. Protein kinase C, focal adhesions and the regulation of cell migration. J Histochem Cytochem. 2014;62:172–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Le Bras GF Taubenslag KJ Andl CD. The regulation of cell-cell adhesion during epithelial-mesenchymal transition, motility and tumor progression. Cell Adh Migr. 2012;6:365–73.

    PubMed Central  PubMed  Google Scholar 

  117. Robertson DS. The development of tumor cell characteristics. J Cell Physiol. 2014;229:705–10.

    CAS  PubMed  Google Scholar 

  118. Yang TH, Chen CT, Wang CP, Lou PJ. Photodynamic therapy suppresses the migration and invasion of head and neck cancer cells in vitro. Oral Oncol. 2007;43:358–65.

    CAS  PubMed  Google Scholar 

  119. Etminan N, Peters C, Ficnar J, Anlasik S, Bünemann E, Slotty PJ, Hänggi D, Steiger HJ, Sorg RV, Stummer W. Modulation of migratory activity and invasiveness of human glioma spheroids following 5-aminolevulinic acid-based photodynamic treatment. Laboratory investigation. J Neurosurg. 2011;115:281–8.

    CAS  PubMed  Google Scholar 

  120. Wang CP, Lou PJ, Lo FY, Shieh MJ. Meta-tetrahydroxyphenyl chlorine mediated photodynamic therapy inhibits the migration and invasion of a nasopharyngeal carcinoma KJ-1 cell line. J Formos Med Assoc. 2014;113:173–8.

    PubMed  Google Scholar 

  121. Jiang Y, Leung AW, Wang X, Zhang H, Xu C. Effect of photodynamic therapy with hypocrellin B on apoptosis, adhesion, and migration of cancer cells. Int J Radiat Biol. 2014;90(7):575–9.

    CAS  PubMed  Google Scholar 

  122. Rottenberg S, Jonkers J. Modeling therapy resistance in genetically engineered mouse cancer models. Drug Resist Updat. 2008;11:51–60.

    CAS  PubMed  Google Scholar 

  123. Politi K, Pao W. How genetically engineered mouse tumor models provide insights into human cancers. J Clin Oncol. 2011;29:2273–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Momma T, Hamblin MR, Wu HC, Hasan T. Photodynamic therapy of orthotopic prostate cancer with benzoporphyrin derivative: local control and distant metastasis. Cancer Res. 1998;58:5425–31.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by Ministerio de Economía y Competitividad (MINECO, FIS PI12/01253), and Comunidad de Madrid (CAM, S2010/BMD-2359), Spain. AZ is recipient of a PhD contract by CAM and SL has a fellowship by UAM (Universidad Autónoma de Madrid).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Juarranz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zamarrón, A. et al. (2015). Isolation and Initial Characterization of Resistant Cells to Photodynamic Therapy. In: Rapozzi, V., Jori, G. (eds) Resistance to Photodynamic Therapy in Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-12730-9_5

Download citation

Publish with us

Policies and ethics