Skip to main content

The Pattern of Lesions During the Transition to the Symptomatic Phase and in Fully Developed Alzheimer’s Disease

  • Chapter
  • First Online:
Neuroanatomy and Pathology of Sporadic Alzheimer's Disease

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 215))

Abstract

Progression into the basal temporal neocortex including portions of the fusiform and lingual gyri, involvement of superordinate olfactory centers and the limbic thalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert MS, Dekosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279

    PubMed Central  PubMed  Google Scholar 

  • Amieva H, Le Goff M, Millet X et al (2008) Prodromal Alzheimer’s disease: successive emergence of clinical symptoms. Ann Neurol 64:492–498

    PubMed  Google Scholar 

  • Arendt T, Brückner MK, Gertz HJ, Marcova L (1998) Cortical distribution of neurofibrillary tangles in Alzheimer’s disease matches the pattern of neurones that retain their capacity of plastic remodelling in the adult brain. Neuroscience 83:991–1002

    CAS  PubMed  Google Scholar 

  • Ashford JW, Bayley PJ (2013) Retrogenesis: a model of dementia progression in Alzheimer’s disease related to neuroplasticity. J Alzheimers Dis 33:1191–1193

    PubMed  Google Scholar 

  • Benarroch EE (1993) The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc 68:988–1001

    CAS  PubMed  Google Scholar 

  • Benarroch EE (2013) Neocortical interneurons. Functional diversity and clinical correlations. Am Acad Neurol 81:273–280

    Google Scholar 

  • Blazquez-Llorca L, Garcia-Martin V, Merino-Serrais P et al (2011) Abnormal tau phosphorylation in the thorny excrescences of CA3 hippocampal neurons in patients with Alzheimer’s disease. J Alzheimer Dis 23:1–16

    Google Scholar 

  • Blessing WW (2004) Lower brain stem regulation of visceral, cardiovascular, and respiratory function. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, San Diego, pp 464–478

    Google Scholar 

  • Bonthius DJ, Solodkin A, van Hoesen GW (2005) Pathology of the insular cortex in Alzheimer disease depends on cortical architecture. J Neuropathol Exp Neurol 64:910–922

    PubMed  Google Scholar 

  • Braak H (1980) Architectonics of the human telencephalic cortex. Springer, Berlin, pp 1–147

    Google Scholar 

  • Braak H, Braak E (1996) Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol 92:197–201

    CAS  PubMed  Google Scholar 

  • Braak E, Braak H (1997a) Alzheimer’s disease: transiently developing dendritic changes in pyramidal cells of sector CA1 of the Ammon’s horn. Acta Neuropathol 93:323–325

    CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1997b) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351–357

    CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K (2004) Poor and protracted myelination as a contributory factor to neurodegenerative disorders. Neurobiol Aging 25:19–23

    CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K (2009) Neuroanatomy and pathology of sporadic Parkinson’s disease. Adv Anat Embryol Cell Biol 201:1–119

    PubMed  Google Scholar 

  • Braak H, Del Tredici K (2011) The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol 121:171–181

    PubMed  Google Scholar 

  • Braak H, Del Tredici K (2012) Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr Opin Neurol 25:708–714

    CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K (2013b) Reply: the early pathological process in sporadic Alzheimer’s disease. Acta Neuropathol 126:615–681

    PubMed  Google Scholar 

  • Braak H, Del Tredici K (2014) Are cases with tau pathology occurring in the absence of the Aβ deposits part of the AD-related pathological process? Acta Neuropathol 128:767–772

    PubMed  Google Scholar 

  • Braak H, Braak E, Kalus P (1989a) Alzheimer’s disease: areal and laminar pathology in the occipital isocortex. Acta Neuropathol 77:494–506

    CAS  PubMed  Google Scholar 

  • Braak H, Rüb U, Schultz C, Del Tredici K (2006b) Vulnerability of cortical neurons to Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis 9(3 Suppl):35–44

    CAS  PubMed  Google Scholar 

  • Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathological process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969

    CAS  PubMed  Google Scholar 

  • Butti C, Santos M, Uppal N, Hof PR (2013) Von Economo neurons: clinical and evolutionary perspectives. Cortex 49:312–326

    PubMed  Google Scholar 

  • Chalermpalanupap T, Kinkead B, Hu WT et al (2013) Targeting norepinephrine in mild cognitive impairment and Alzheimer’s disease. Alzheimers Res Ther 5:21

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christen-Zaech S, Kraftsik R, Pillevuit O et al (2003) Early olfactory involvement in Alzheimer’s disease. Can J Neurol Sci 30:20–25

    CAS  PubMed  Google Scholar 

  • Chu CC, Tranel D, Damasio AR et al (1997) The autonomic-related cortex: pathology in Alzheimer’s disease. Cereb Cortex 7:86–95

    CAS  PubMed  Google Scholar 

  • Cramer SC, Chopp M (2000) Recovery recapitulates ontogeny. Trends Neurosci 23:265–271

    CAS  PubMed  Google Scholar 

  • Crary JF, Trojanowski JQ, Schneider JA et al (2014) Primary age-related tauopathy (PART): a common pathology associated with aging. Acta Neuropathol 128:755–766

    CAS  PubMed  Google Scholar 

  • Davis DG, Schmitt FA, Wekstein DR, Markesbery WR (1999) Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 58:376–388

    CAS  PubMed  Google Scholar 

  • Delacourte A (2008) Tau pathology and neurodegeneration: an obvious but misunderstood link. J Alzheimers Dis 14:437–440

    PubMed  Google Scholar 

  • Delbeuck X, van der Linden M, Collette F (2003) Alzheimer’s disease as a disconnection syndrome? Neuropsychol Rev 13:79–92

    CAS  PubMed  Google Scholar 

  • Dickerson BC, Stoub TR, Shah RC et al (2011) Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology 76:1395–1402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dickson DW (1997a) The value of cross-sectional neuroanatomical studies as a conceptual framework for prospective clinicopathological studies. Neurobiol Aging 18:382–386

    CAS  PubMed  Google Scholar 

  • Dickson DW, Rademakers R, Hutton ML (2007) Progressive supranuclear palsy: pathology and genetics. Brain Pathol 17:74–82

    CAS  PubMed  Google Scholar 

  • Dolan D, Troncoso J, Resnick SM et al (2010) Age, Alzheimer’s disease and dementia in the Baltimore longitudinal study of ageing. Brain 133:2225–2231

    PubMed Central  PubMed  Google Scholar 

  • Dringenberg HC (2000) Alzheimer’s disease: more than a ‘cholinergic disorder’ – evidence that cholinergic-monoaminergic interactions contribute to EEG slowing and dementia. Behav Brain Res 115:236–249

    Google Scholar 

  • Dugger BN, Tu M, Murray ME, Dickson DW (2011) Disease specificity and pathologic progression of tau pathology in brainstem nuclei of Alzheimer’s disease and progressive supranuclear palsy. Neurosci Lett 491:122–126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dugger BN, Hidalgo JA, Chiarolanza G et al (2013) The distribution of phosphorylated tau in spinal cords of Alzheimer’s disease and non-demented individuals. J Alzheimer Dis 34:529–536

    CAS  Google Scholar 

  • Duyckaerts C (2011) Tau pathology in children and young adults: can you still be unconditionally baptist? Acta Neuropathol 121:145–147

    PubMed  Google Scholar 

  • Duyckaerts C, Hauw JJ (1997) Prevalence, incidence and duration of Braak’s stages in the general population: can we know? Neurobiol Aging 18:362–369

    CAS  PubMed  Google Scholar 

  • Ewers M, Frisoni GB, Teipel SJ et al (2011) Staging Alzheimer’s disease progression with multimodality neuroimaging. Prog Neurobiol 95:535–546

    PubMed Central  PubMed  Google Scholar 

  • Ewers M, Walsh C, Trojanowski JQ et al (2012) Prediction of conversion from mild cognitive imairment to Alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance. Neurobiol Aging 33:1203–1214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Femminella GD, Rengo G, Komici K et al (2014) Autonomic dysfunction in Alzheimer’s disease: tools for assessment and review of the literature. J Alzheimers Dis. June 2 [Epub ahead of print]

    Google Scholar 

  • Franssen EH, Kluger A, Torossian CL, Reisberg B (1993) The neurologic syndrome of severe Alzheimer’s disease. Relationship to functional decline. Arch Neurol 50:1029–1039

    CAS  PubMed  Google Scholar 

  • Friedman JI, Adler DH, Davis KL (1999) The role of norepinephrine in the pathophysiology of cognitive disorders: potential applications to the treatment of cognitive dysfunction in Schizophrenia and Alzheimer’s disease. Biol Psychiatry 46:1243–1252

    CAS  PubMed  Google Scholar 

  • Gates GA, Beiser A, Rees TS et al (2002) Central auditory dysfunction may precede the onset of clinical dementia in people with probable Alzheimer’s disease. J Am Geriatr Soc 50:74–82

    Google Scholar 

  • Ghebremedhin E, Schultz C, Braak E, Braak H (1998) High frequency of apolipoprotein E epsilon4 allele in young individuals with very mild Alzheimer’s disease-related neurofibrillary changes. Exp Neurol 153:152–155

    CAS  PubMed  Google Scholar 

  • Giannakopoulos P, Herrmann FR, Nussière T et al (2003) Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60:1495–1500

    CAS  PubMed  Google Scholar 

  • Gogtay N, Thompson PM (2010) Mapping gray matter development: implications for typical development and vulnerability to psychopathology. Brain Cogn 72:6–15

    PubMed Central  PubMed  Google Scholar 

  • Gold G, Bouras C, Kövari E et al (2000) Clinical validity of Braak neuropathological staging in the oldest-old. Acta Neuropathol 99:579–582

    CAS  PubMed  Google Scholar 

  • Grantham C, Geerts H (2002) The rationale behind cholinergic drug treatment for dementia related to cerebrovascular disease. J Neurol Sci 203–204:131–136

    PubMed  Google Scholar 

  • Grober E, Dickson D, Sliwinski MJ et al (1999) Memory and mental status correlates of modified Braak staging. Neurobiol Aging 20:573–579

    CAS  PubMed  Google Scholar 

  • Halliday GM, Leverenz JB, Schneider JS, Adler CH (2014) The neurobiological basis of cognitive impairment in Parkinson’s disease. Mov Disord 29:634–650

    CAS  PubMed  Google Scholar 

  • Howard A, Tamas G, Soltesz I (2005) Lighting the chandelier: new vistas for axo-axonic cells. Trends Neurosci 28:310–316

    CAS  PubMed  Google Scholar 

  • Hyman BT, Gómez-Isla T (1997) The natural history of Alzheimer neurofibrillary tangles and amyloid deposits. Neurobiol Aging 18:386–387

    CAS  PubMed  Google Scholar 

  • Hyman BT, Kromer LJ, van Hoesen GW (1988) A direct demonstration of the perforant pathway terminal zone in Alzheimer’s disease using the monoclonal antibody Alz-50. Brain Res 450:392–397

    CAS  PubMed  Google Scholar 

  • Hyman BT, van Hoesen GW, Damasio AR (1990) Memory-related systems in Alzheimer’s disease: an anatomic study. Neurology 40:1721–1730

    CAS  PubMed  Google Scholar 

  • Iseki E, Tsunoda S, Suzuki K et al (2002) Regional quantitative analysis of NFT in brains of non-demented elderly persons: comparisons with findings in brains of late-onset Alzheimer’s disease and limbic NFT dementia. Neuropathology 22:34–39

    PubMed  Google Scholar 

  • Jack CR Jr, Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jellinger KA, Attems J (2007) Neurofibrillary tangle-predominant dementia: comparison with classical Alzheimer disease. Acta Neuropathol 113:107–117

    CAS  PubMed  Google Scholar 

  • Kemper TL (1984) Neuroanatomical and neuropathological changes in normal aging and in dementia. In: Albert ML (ed) Clinical neurology of aging. Oxford University Press, New York, NY, pp 9–52

    Google Scholar 

  • Korczyn AD (2013) Is Alzheimer’s disease a homogeneous disease entity? J Neural Transm 120:1475–1477

    PubMed  Google Scholar 

  • Kovács T (2013) The olfactory system in Alzheimer’s disease: pathology, pathophysiology, and pathway for therapy. Transl Neurosci 4:34–45

    Google Scholar 

  • Kurylo DD, Corkin S, Allard T et al (1993) Auditory function in Alzheimer’s disease. Neurology 43:1893–1899

    CAS  PubMed  Google Scholar 

  • Liberati G, Raffone A, Belardinelli O (2012) Cognitive reserve and its implications for rehabilitation and Alzheimer’s disease. Cogn Process 13:1–12

    PubMed  Google Scholar 

  • Mann DMA, Hardy J (2013) Amyloid or tau – the chicken or the egg? Acta Neuropathol 126:609–613

    PubMed  Google Scholar 

  • Marien MR, Colpaert FC, Rosenquist AC (2004) Noradrenergic mechanisms in neurodegenerative diseases: a theory. Brain Res Brains Res Rev 45:38–78

    CAS  Google Scholar 

  • Markesbery WR, Schmitt FA, Kryscio RJ et al (2006) Neuropathologic substrate of mild cognitive impairment. Arch Neurol 63:38–46

    PubMed  Google Scholar 

  • Mayeux R (2010) Early Alzheimer’s disease. N Engl J Med 362:2194–2201

    CAS  PubMed  Google Scholar 

  • Medina M, Ávila J (2014b) New perspectives on the role of tau in Alzheimer’s disease. Implication for therapy. Biochem Pharmacol 88:540–547

    CAS  PubMed  Google Scholar 

  • Meel-van den Abeelen AS, Lagro J et al (2013) Baroreflex function is reduced in Alzheimer’s disease: a candidate biomarker? Neurobiol Aging 34:1170–1176

    PubMed  Google Scholar 

  • Mesulam MM, Mufson EJ (1993) The insula of Reil in man and monkey. In: Jones EG, Peters A (eds) Cerebral cortex. Association and auditory cortices, vol 4. Plenum, New York, NY, pp 179–225

    Google Scholar 

  • Moceri VM, Kukull WA, Emanuel I et al (2000) Early-life risk factors and the development of Alzheimer’s disease. Neurology 54:415–420

    CAS  PubMed  Google Scholar 

  • Morris JC, Storandt M, Miller JP et al (2001) Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 58:397–405

    CAS  PubMed  Google Scholar 

  • Mufson EJ, Binder L, Counts SE et al (2012) Mild cognitive impairment: pathology and mechanisms. Acta Neuropathol 123:13–30

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson PT, Jicha GA, Schmitt FA et al (2007) Clinicopathologic correlations in a large Alzheimer disease center autopsy cohort: neuritic plaques and neurofibrillary tangles “do count” when staging disease severity. J Neuropathol Exp Neurol 66:1136–1146

    PubMed Central  PubMed  Google Scholar 

  • Nelson PT, Braak H, Markesbery WR (2009) Neuropathology and cognitive impairment in Alzheimer’s disease: a complex but coherent relationship. J Neuropathol Exp Neurol 68:1–14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nieuwenhuys R (2012) The insular cortex: a review. Prog Brain Res 195:123–163

    PubMed  Google Scholar 

  • Parvizi J, van Hoesen GW, Damasio A (1998) Severe pathological changes of parabrachial nucleus in Alzheimer’s disease. Neuroreport 9:4151–4154

    CAS  PubMed  Google Scholar 

  • Petersen RC (2000) Mild cognitive impairment: transition between aging and Alzheimer’s disease. Neurologia 15:93–101

    CAS  PubMed  Google Scholar 

  • Petersen RC (2009) Early diagnosis of Alzheimer’s disease: is MCI too late? Curr Alzheimer Res 6:324–330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petersen RC (2011) Clinical practice. Mild cognitive impairment. N Engl J Med 364:2227–2234

    CAS  PubMed  Google Scholar 

  • Petersen RC, Doody R, Kurz A et al (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–1992

    CAS  PubMed  Google Scholar 

  • Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45:358–368

    CAS  PubMed  Google Scholar 

  • Price JL, Morris JC (2004) So what if tangles precede plaques? Neurobiol Aging 25:721–723

    CAS  PubMed  Google Scholar 

  • Price JL, Davis PB, Morris JC, White DL (1991) The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiol Aging 12:295–312

    CAS  PubMed  Google Scholar 

  • Price JL, Carmichael ST, Drevets WC (1996) Networks related to the orbital and medial prefrontal cortex; a substrate for emotional behavior? Prog Brain Res 107:523–526

    CAS  PubMed  Google Scholar 

  • Ramirez MJ, Lai MK, Tordera RM, Francis PT (2014) Serotonergic therapies for cognitive symptoms in Alzheimer’s disease: rationale and current status. Drugs 74:729–736

    CAS  PubMed  Google Scholar 

  • Reid AT, Evans AC (2013) Structural networks in Alzheimer’s disease. Eur Neuropsychopharmacol 23:63–77

    CAS  PubMed  Google Scholar 

  • Reisberg B, Franssen EH, Hasan SM et al (1999) Retrogenesis: clinical, physiologic, and pathologic mechanisms in brain aging, Alzheimer’s and other dementing processes. Eur Arch Psychiatry Clin Neurosci 249(Suppl 3):28–36

    PubMed  Google Scholar 

  • Reisberg B, Franssen EH, Souren LE et al (2002) Evidence and mechanisms of retrogenesis in Alzheimer’s and other dementias: management and treatment import. Am J Alzheimers Dis Other Demen 17:202–212

    PubMed  Google Scholar 

  • Rentz DM, Parra Rodriguez MA et al (2013) Promising developments in neuropsychological approaches for the detection of preclinical Alzheimer’s disease: a selective review. Alzheimers Res Ther 5:58

    PubMed Central  PubMed  Google Scholar 

  • Royall DR (2008) Insular Alzheimer disease pathology and the psychometric correlates of mortality. Cleve Clin J Med 75(Suppl 2):97–99

    Google Scholar 

  • Royall DR, Gao JH, Kellogg DL (2008) Insular Alzheimer’s disease pathology as a cause of ‘age-related’ autonomic dysfunction and mortality in the non-demented elderly. Med Hypotheses 67:747–758

    Google Scholar 

  • Rüb U, Del Tredici K, Schultz C et al (2001a) The premotor region essential for rapid vertical eye movements shows early involvement in Alzheimer’s disease-related cytoskeletal pathology. Vision Res 41:2149–2156

    PubMed  Google Scholar 

  • Rüb U, Del Tredici K, Schultz C et al (2001b) The autonomic higher oder processing nuclei of the lower brain stem are among the early targets of the Alzheimer’s disease-related cytoskeletal pathology. Acta Neuropathol 101:555–564

    PubMed  Google Scholar 

  • Rubial-Álvarez S, de Sola S, Machado MC et al (2013) The comparison of cognitive and functional performance in children and Alzheimer’s disease supports the retrogenesis model. J Alzheimers Dis 33:193–203

    Google Scholar 

  • Sabbagh MN, Cooper K, DeLange J et al (2010) Functional, global and cognitive decline correlates to accumulation of Alzheimer’s pathology in MCI and AD. Curr Alzheimer Res 7:280–286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schönheit B, Zarski R, Ohm TG (2004) Spatial and temporal relationship between plaques and tangles in Alzheimer-pathology. Neurobiol Aging 25:697–711

    PubMed  Google Scholar 

  • Simic G, Bexheti S, Kelovic Z et al (2005) Hemispheric asymmetry, modular variability and age-related changes in the human entorhinal cortex. Neuroscience 130:911–925

    CAS  PubMed  Google Scholar 

  • Sinha UK, Hollen KM, Rodriguez R, Miller CA (1993) Auditory system degeneration in Alzheimer’s disease. Neurology 43:779–785

    CAS  PubMed  Google Scholar 

  • Smith GS, Kramer E, Ma Y et al (2009) Cholinergic modulation of the cerebral metabolic response to citaopram in Alzheimer’s disease. Brain 132:392–401

    PubMed Central  PubMed  Google Scholar 

  • Sperling RA, Aisen PS, Beckett LA et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:280–292

    PubMed Central  PubMed  Google Scholar 

  • Stricker NH, Schweinsburg BC, Delano-Wood L et al (2009) Decreased white matter integrity in late-myelinating fiber pathways in Alzheimer’s disease supports retrogenesis. Neuroimage 45:10–16

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tayab HO, Yang HD, Price BH, Tarazi FI (2012) Pharmacotherapies for Alzheimer’s disease: beyond cholinesterase inhibitors. Pharmacol Ther 134:8–25

    Google Scholar 

  • Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    PubMed  Google Scholar 

  • Thal DR, von Arnim C, Griffin WS et al (2013) Pathology of clinical and preclinical Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 263(Suppl 2):137–145

    Google Scholar 

  • Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J (2004) The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology 62:1984–1989

    CAS  PubMed  Google Scholar 

  • Uchihara T, Shibuya K, Nakamura A, Yagishita S (2005) Silver stains distinguish tau-positive structures in corticobasal degeneration/progressive supranuclear palsy and in Alzheimer’s disease – comparison between Gallyas and Campbell-Switzer methods. Acta Neuropathol 109:299–305

    PubMed  Google Scholar 

  • Uchihara T, Nakamura A, Shibuya K, Yagishita S (2011) Specific detection of pathological three-repeat tau after pretreatment with potassium permanganate and oxalic acid in PSP/CBD brains. Brain Pathol 21:180–188

    CAS  PubMed  Google Scholar 

  • Uchihara T, Hara M, Nakamura A, Hirokawa K (2012) Tangle evolution linked to differential 3- and 4-repeat tau isoform deposition: a double immunofluorolabeling study using two monoclonal antibodies. Histochem Cell Biol 137:261–267

    CAS  PubMed  Google Scholar 

  • van der Werf WMP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Rev 39:107–140

    PubMed  Google Scholar 

  • van Hoesen GW, Hyman BT (1990) Hippocampal formation: anatomy and the patterns of pathology in Alzheimer’s disease. Prog Brain Res 83:445–457

    PubMed  Google Scholar 

  • Vogt BA (2009) Regions and subregions of the cingulate cortex. In: Vogt BA (ed) Cingulate neurobiology and disease. Oxford University Press, New York, NY, pp 3–30

    Google Scholar 

  • Vogt BA, Sikes RW, Vogt LJ (1993) Anterior cingulate cortex and the medial pain system. In: Vogt BA, Gabriel M (eds) Neurobiology of cingulate cortex and limbic thalamus. Birkhäuser, Boston, MA, pp 313–344

    Google Scholar 

  • Woodruff AR, Anderson SA, Yuste R (2010) The enigmatic function of chandelier cells. Front Neurosci 4:201

    PubMed Central  PubMed  Google Scholar 

  • Zakrzewska-Pniewska B, Gawel M, Szmidt-Salkowska E et al (2012) Clinical and functional assessment of dysautonomia and its correlation in Alzheimer’s disease. Am J Alzheimers Dis Other Demen 27:592–599

    PubMed  Google Scholar 

  • Zanelli O, Solerte SB, Cantoni F (2009) Life expectancy in Alzheimer’s disease (AD). Arch Gerontol Geriatr 49(Suppl 1):237–243

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Braak, H., Del Tredici, K. (2015). The Pattern of Lesions During the Transition to the Symptomatic Phase and in Fully Developed Alzheimer’s Disease. In: Neuroanatomy and Pathology of Sporadic Alzheimer's Disease. Advances in Anatomy, Embryology and Cell Biology, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-12679-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12679-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12678-4

  • Online ISBN: 978-3-319-12679-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics