Skip to main content

Processing Technologies for Bioceramic Based Composites

  • Reference work entry
  • First Online:
Handbook of Bioceramics and Biocomposites

Abstract

This chapter will provide a detailed overview of the processing techniques and properties of bioceramics, with special emphasis on nearly inert ceramics like alumina-based composites and bioactive ceramics like hydroxyapatite-based composites and machinable glass ceramics.

The chapter mainly covers the types of bioceramic implant–tissue attachments, powder synthesis, processing methods for porous and dense bulk bioceramics, and bioceramic-based composites production using conventional pressureless sintering and pressure-assisted sintering, mainly focusing on spark plasma sintering and glass and glass ceramic production with a controlled heat treatment of nucleation and crystallization. Further physical, microstructural, and mechanical characterization techniques are discussed including phase, surface, and differential thermal analyses. Biological behavior and bioactivity measurements of bioactive hydroxyapatite-based composites, machinable glass ceramics, and zirconia toughened alumina composites in in vitro environments such as cell viability and alkaline phosphatase activity assays are also elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kingery WD, Bowen HK, Uhlmann DR (1960) Introduction to ceramics. Wiley, Singapore

    Google Scholar 

  2. Carter CB, Norton MG (2007) Ceramic materials science and engineering. Springer, New York

    Google Scholar 

  3. Trunec M, Maca K (2014) Advanced ceramic processes. In: Shen JZ, Kosmač T (eds) Advanced ceramics for dentistry, 1st edn. Elsevier, Waltham, pp 142–147

    Google Scholar 

  4. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    Article  Google Scholar 

  5. Hench LL, Wilson J (1993) An introduction to bioceramics. World Scientific, Singapore

    Book  Google Scholar 

  6. Damestani Y, Reynolds CL, Szu J, Hsu MS, Kodera Y, Binder DK, Park BH, Garay JE, Rao MP, Aguilar G (2013) Transparent nanocrystalline yttria-stabilized-zirconia calvarium prosthesis. Nanomed Nanotechnol 9:1135–1138

    Article  Google Scholar 

  7. Turkmen AK (2014) Production and characterization of chitosan-hydroxyapatite-fibrinogen 3D scaffolds by different techniques. MSc dissertation, Istanbul Technical University

    Google Scholar 

  8. Ren LM, Todo M, Arahira T, Yoshikawa H, Myoui A (2012) A comparative biomechanical study of bone ingrowth in two porous hydroxyapatite bioceramics. Appl Surf Sci 262:81–88

    Article  Google Scholar 

  9. Akin I, Goller G (2009) Effect of CeO2 addition on crystallization behavior, bioactivity and biocompatibility of potassium mica and fluorapatite based glass ceramics. J Ceram Soc Jpn 117:787–797

    Article  Google Scholar 

  10. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

    Article  Google Scholar 

  11. Bohner M, Lemaitre J (2009) Can bioactivity be tested in vitro with SBF solution? Biomaterials 30:2175–2179

    Article  Google Scholar 

  12. Höland W, Beall GH (2002) Glass-ceramic technology. The American Ceramic Society, Westerville

    Google Scholar 

  13. El-Meliegy E, Noort R (2012) Glasses and glass ceramics for medical applications. Springer, New York

    Book  Google Scholar 

  14. Goller G, Akin I (2008) Effect of CeO2 addition on in-vitro bioactivity properties of K-mica- fluorapatite based glass ceramics. Key Eng Mater 361–363:261–264

    Article  Google Scholar 

  15. Akin I, Goller G (2007) Effect of TiO2 addition on crystallization and machinability of potassium mica and fluorapatite glass ceramics. J Mater Sci 42:883–888

    Article  Google Scholar 

  16. Leonelli C, Lusvardi G, Malavasi G, Menabue L, Tonelli M (2003) Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity. J Non Cryst Solids 316:198–216

    Article  Google Scholar 

  17. Andrade AL, Valerio P, Goes AM, Leite MF, Domingues RZ (2006) Influence of morphology on in vitro compatibility of bioactive glasses. J Non Cryst Solids 352:3505–3511

    Google Scholar 

  18. Valerio P, Pereria MM, Goes AM, Leite MF (2004) The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials 25:2941–2948

    Article  Google Scholar 

  19. Wilson J, Low S, Fetner A, Hench LL (1987) Bioactive materials for periodontal treatment: a comparative study. In: Pizzoferrato A, Marchetti PG, Ravaglioli A, Lee AJC (eds) Biomaterials and clinical applications, 1st edn. Elsevier, Amsterdam, pp 223–228

    Google Scholar 

  20. Ratner BD, Hoffman AS (2009) Biomedical engineering desk reference. Academic, Oxford

    Google Scholar 

  21. Agrawal D (2010) Microwave sintering of ceramics, composites and metal powders. In: Fang ZZ (ed) Sintering of advanced materials: fundamentals and processes, 1st edn. Woodhead Publishing, Oxford, pp 222–225

    Chapter  Google Scholar 

  22. Ring TA (1996) Fundamentals of ceramic powder processing and synthesis. Academic, San Dieg

    Google Scholar 

  23. Kokubo T (2008) Bioceramics and their clinical applications. Woodhead Publishing Limited and CRC Press, Cambridge

    Book  Google Scholar 

  24. Orlovskii VP, Komlev VS, Barinov SM (2002) Hydroxyapatite and hydroxyapatite-based ceramics. Inorg Mater 38:973–984

    Article  Google Scholar 

  25. Rahaman MN (2007) Sintering of ceramics. CRC Press/Taylor & Francis, Boca Raton

    Book  Google Scholar 

  26. German RM (2010) Thermodynamics of sintering. In: Fang ZZ (ed) Sintering of advanced materials: fundamentals and processes, 1st edn. Woodhead Publishing, Oxford, pp 1–15

    Google Scholar 

  27. Angelo PC, Subramanian R (2009) Powder metallurgy: science, technology and applications. PHI Learning, New Delhi

    Google Scholar 

  28. Goller G, Demirkiran H, Oktar FN, Demirkesen E (2003) Processing and characterization of bioglass reinforced hydroxyapatite composites. Ceram Int 29:721–724

    Article  Google Scholar 

  29. National Research Council Staff (1994) Microwave processing of materials. Academies Press, Washington, DC

    Google Scholar 

  30. German RM (1996) Sintering theory and practice. Wiley, New York

    Google Scholar 

  31. Olevsky EA, Bradbury WL, Haines CD, Martin DG, Kapoor D (2012) Fundamental aspects of spark plasma sintering: I. experimental analysis of scalability. J Am Ceram Soc 95:2406–2412

    Article  Google Scholar 

  32. Munir ZA, Quach DV (2011) Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc 94:1–19

    Article  Google Scholar 

  33. Tokita M (1997) Mechanism of spark plasma sintering. In: Miyake S, Samandi M (eds) Proceedings of the international symposium on microwave, plasma and thermochemical processing of advanced materials, 1st edn. JWRI, Osaka Universities, Osaka, pp 69–76

    Google Scholar 

  34. Balagopal N, Warrier KGK, Damodaran AD (1991) Alumina-ceria composite powders through a flash combustion technique. J Mater Sci Lett 10:1116–1118

    Article  Google Scholar 

  35. De Aza AH, Chevalier J, Fantozzi G, Schehl M, Torrecillas R (2002) Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials 23:937–945

    Article  Google Scholar 

  36. Heros R, Willmann G (1998) Ceramics in total hip arthroplasty: history, mechanical properties, clinical results and current manufacturing state of the art. Semin Arthroplast 9:114–122

    Google Scholar 

  37. Szutkowska M (2004) Fracture resistance behavior of alumina-zirconia composites. J Mater Process Technol 153:868–874

    Article  Google Scholar 

  38. Hannink RHJ, Swain MV (1994) Progress in transformation toughening of ceramics. Annu Rev Mater Sci 24:359–408

    Article  Google Scholar 

  39. Chevalier J, Cales B, Drouin JM (1999) Low temperature aging of Y-TZP ceramics. J Am Ceram Soc 82:2150–2154

    Article  Google Scholar 

  40. Akin I, Yilmaz E, Sahin F, Yucel O, Goller G (2011) Effect of CeO2 addition on densification and microstructure of Al2O3-YSZ composites. Ceram Int 37:3273–3280

    Article  Google Scholar 

  41. Ormanci O, Akin I, Sahin F, Yucel O, Simon V, Cavalu S, Goller G (2014) Spark plasma sintered Al2O3-YSZ-TiO2 composites: processing, characterization and in vivo evaluation. Mater Sci Eng C 40:16–23

    Article  Google Scholar 

  42. Shyu JZ, Weber WH, Gandhi HS (1988) Surface characterization of alumina-supported ceria. J Phys Chem 92:4964–4970

    Article  Google Scholar 

  43. Skorodumova NV, Simak SI, Lundqvist BI, Abrikosov IA, Johansson B (2002) Quantum origin of the oxygen storage capability of ceria. Phys Rev Lett 89:166601-1-4

    Google Scholar 

  44. Huang TC, Moran E, Nazzal AI, Torrance JB, Wang PW (1989) Determination of the average ionic radius and effective valence of Ce in the Nd2-xCexCuO4 electron superconductor system by X-ray diffraction. Phys C: Supercond 159:625–628

    Article  Google Scholar 

  45. Tsukama K (2000) Conversion from β-Ce2O3 · 11Al2O3 to α-Al2O3 in tetragonal ZrO2 matrix. J Am Ceram Soc 83:3219–3221

    Article  Google Scholar 

  46. Huang SG, Vanmeensel K, Van der Biest O, Vleugels J (2007) Influence of CeO2 reduction on the microstructure and mechanical properties of pulsed electric current sintered Y2O3-CeO2 co-stabilized ZrO2 ceramics. J Am Ceram Soc 90:1420–1426

    Article  Google Scholar 

  47. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33–72

    Article  Google Scholar 

  48. Pierre AC (1998) Introduction to sol-gel processing. Kluwer, Boston

    Book  Google Scholar 

  49. Sakka S (2005) Handbook of sol-gel science and technology, processing characterization and applications. Kluwer, Boston

    Google Scholar 

  50. Nassar EJ, Katia J, Calefi PS, Rocha RA, De Faria EH, e Silva MLA, Luz PP, Banderia LC, Cestari A, Fernandes CN (2011) Biomaterials and sol-gel process: a methodology for the preparation of functional materials. In: Pignatello R (ed) Biomaterials science and engineering, 1st edn. InTech, Rijeka/Croatia, pp 1–12

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Simona Cavalu (in vivo tests), Viorica Simon (in vivo tests) and Huseyin Sezer (microstructural characterization). The financial support for the researches in this chapter by The State Planning Organization of Turkey (project number: 90150), The Scientific and Technological Research Council of Turkey (Turkey-Romania Bilateral Cooperation Project/111M455) and Istanbul Technical University Scientific Research Projects Division (project numbers: 32048 and 33667) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gultekin Goller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Akin, I., Goller, G. (2016). Processing Technologies for Bioceramic Based Composites. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-12460-5_14

Download citation

Publish with us

Policies and ethics